Quantum Fundamentals: NoTerm-2021
HW 2 Practice : Due 2/12 Fri

  1. Hermitian Adjoints S0 4106S Calculate the following quantities for the matrices: \[A\doteq \begin{pmatrix} 1&0&0\\ 0&0&1\\ 0&-1&0\\ \end{pmatrix} \hspace{2em} B\doteq \begin{pmatrix} a&b&c\\ d&e&f\\ g&h&j\\ \end{pmatrix} \hspace{2em} C\doteq \begin{pmatrix} \cos\theta&-\sin\theta\\\sin\theta&\cos\theta\\ \end{pmatrix} \] and the vectors: \[\left|D\right\rangle\doteq \begin{pmatrix} 1\\ i\\ -1\\ \end{pmatrix} \hspace{2em} \left|E\right\rangle\doteq \begin{pmatrix} 1\\ i\\ \end{pmatrix} \hspace{2em} \left|F\right\rangle\doteq \begin{pmatrix} 1\\ -1\\ \end{pmatrix} \]
    1. \(A^{\dagger}\)
    2. \(\vert E\rangle^{\dagger}\equiv\langle E\vert\)
    3. \(\langle D\vert A\vert D\rangle\)
    4. \(\left(A\vert D\rangle\right)^{\dagger}\)
    5. Using explicit matrix multiplication (without using a theorem) verify that \(\left(A\vert D\rangle\right)^{\dagger} =\langle D\vert A^{\dagger}\)