Lie Groups and Lie Algebras: Winter-2023 Practice Exercises 1 : Due Friday 1/13
Euler's Formula II
S0 4603S
Look up or derive the Taylor series expansions for \(\cos\theta\), \(\sin\theta\), and \(e^x\).
Show that \(e^{i\theta}=\cos\theta+i\sin\theta\).
Verify that \(e^{2i\theta}=(e^{i\theta})^2\) using trigonometric identities, that is, show that
\[
\cos2\theta+i\sin2\theta = (\cos\theta+i\sin\theta)^2
\]
Orthogonal Groups
S0 4603S
Let \(SO(n)=\{M\in\mathbb{R}^{n\times n}:M^TM=1\}\) and \(\mathfrak{so}(n)=\{A\in\mathbb{R}^{n\times n}:A^T+A=0\}\), where \(\mathbb{R}^{n\times n}\) denotes the set of real \(n\times n\) matrices.
Show that \(SO(n)\) is a group.
Show that \(\mathfrak{so}(n)\) is a vector space.
Show that if \(A,B\in\mathfrak{so}(n)\) then \([A,B]=AB-BA\in\mathfrak{so}(n)\).
The Rotation Group $SO(2)$
S0 4603S
Consider rotation matrices of the form
\[
M(\theta) = \begin{pmatrix}
\cos\theta&-\sin\theta\\\sin\theta&\cos\theta
\end{pmatrix}
\]