Student handout: The Grid

Vector Calculus II 2021
  1. Consider the rectangle in the first quadrant of the \(xy\)-plane as in the figure with thick black lines.
    • Label the bottom horizontal edge of the rectangle \(y=c\).
    • Label the sides of the rectangle \(\Delta x\) and \(\Delta y\).
    • What is the area of the rectangle?
    • There are also 2 rectangles whose base is the \(x\)-axis, the larger of which contains both the smaller and the original rectangle. Express the area of the original rectangle as the difference between the areas of these 2 rectangles.
  2. On the grid below, draw any simple, closed, piecewise smooth curve \(C\), all of whose segments \(C_i\) are parallel either to the \(x\)-axis or to the \(y\)-axis. Your curve should not be a rectangle. Pick an origin and label it, and assume that each square is a unit square.
    • Compute the area of the region \(D\) inside \(C\) by counting the number of squares inside \(C\).
    • Evaluate the line integral \(\displaystyle \oint_C y\,\boldsymbol{\hat{x}}\cdot d\boldsymbol{\vec{r}}\) by noticing that along each segment either \(x\) or \(y\) is constant, so that the integral is equal to \(\sum_{C_i} y\,\Delta x\).

      Can you relate this to Problem 1?

    • Are your answers to the preceding two calculations the same?
    • Would any of your answers change if you replaced \(y\,\boldsymbol{\hat{x}}\) by \(x\,\boldsymbol{\hat{y}}\) in part (b)?

Keywords
area line integrals Green's Theorem
Learning Outcomes