In this small group activity, students determine various aspects of local points on an elliptic hill which is a function of two variables. The gradient is emphasized as a local quantity which points in the direction of greatest change at a point in the scalar field.
Suppose you are standing on a hill. You have a topographic map, which uses rectangular coordinates \((x,y)\) measured in miles. Your global positioning system says your present location is at one of the following points (pick one): \[A:(1,4),\quad B:(4,-9),\quad C:(-4,9),\quad D:(1,-4),\quad E:(2,0),\quad F:(0,3)\] Your guidebook tells you that the height \(h\) of the hill in feet above sea level is given by \[h=a-bx^2-cy^2\] where \(a=5000~\mathrm{ft}\), \(b=30\,\mathrm{\frac{ft}{mi^2}}\), and \(c=10\,\mathrm{\frac{ft}{mi^2}}\).