Fill in the following table with the appropriate eigenvalues for each operator for each system.
\[ \begin{matrix} ~\\L_z\\~\\L^2\\~\\H \end{matrix} \begin{vmatrix}\left|{m}\right\rangle &\left|{\ell,m}\right\rangle &\left|{n,\ell,m}\right\rangle \\ \underline{\text{particle on a ring}}& \underline{\text{particle on a sphere} }& \underline{\text{Hydrogen atom}}\\~\\ \\~\\ \\~\\~\\ \end{vmatrix}\]
Write the Hamiltonian for each of the following systems explicitly in the position representation (i.e., differential operators).
\[ H\begin{vmatrix}\left|{m}\right\rangle &~&~&\left|{\ell,m}\right\rangle &~&~&\left|{n,\ell,m}\right\rangle \\ \underline{\text{particle on a ring}}&~&~& \underline{\text{particle on a sphere} }&~&~& \underline{\text{Hydrogen atom}}\\\\ \\ \\ \end{vmatrix} \]
A hydrogen atom is initially in the state \(\left|{\Psi(t=0)}\right\rangle =\frac{1}{\sqrt{2}}\left(\vert 1,0,0\rangle +\vert 2,1,0\rangle\right)\).
Write \(\left|{\Psi(t)}\right\rangle \) in wave function notation.
A hydrogen atom is initially in the superposition state \begin{equation} \vert \psi(t=0) \rangle = \frac{1}{\sqrt{14}}\vert 2,1,1\rangle - \frac{2}{\sqrt{14}}\vert 3,2,-1\rangle + \frac{3}{\sqrt{14}}\vert 4,2,2\rangle . \end{equation}