Consider the Stern-Gerlach set-up shown, with a thermal oven source, and some state vectors associated with various analyzer outputs:
How many particles were released from the oven?
We can just add up all the particles from all the counters:
29883+15070+7473+7574 = 60000
Write down Dirac notation expressions for \(|\Psi_a\rangle\), \(|\Psi_b\rangle\), \(|\Psi_c\rangle\), and \(|\Psi_d\rangle\) in the \(S_z\) basis (i.e., as linear superpositions of \(|+\rangle_z\) and \(|-\rangle_z\)).
\(|\Psi_a\rangle = |+\rangle\)
\(|\Psi_b\rangle = \frac{1}{\sqrt{2}}|+\rangle+\frac{i}{\sqrt{2}}|-\rangle\)
\(|\Psi_c\rangle = |+\rangle\)
\(|\Psi_d\rangle = \frac{1}{\sqrt{2}}|+\rangle-\frac{i}{\sqrt{2}}|-\rangle\)
You have experimentally obtained the relative probabilities with which the eigenvalues of operators \(\,\widehat{\!S}_z\), \(\,\widehat{\!S}_x\), and \(\,\widehat{\!S}_z\) show up, in measurements on the system in the unknown initial states \(\left|{\psi_i}\right\rangle \) (\(i=3,4\)). To find what the initial states were, expressed in the eigenbasis of the \(\,\widehat{\!S}_z\) operator, \(\{\left|{+}\right\rangle ,\left|{-}\right\rangle \}\), we use a general form for a quantum--mechanical state, \[ \left|{\psi_i}\right\rangle = a_i \left|{+}\right\rangle + b_i e^{i \phi_i} \left|{-}\right\rangle . \] where \(a_i\) and \(b_i\) are real and positive and \(\gamma_i\) is an angle. Notice that I can use the freedom in the overall phase for the state to make the coefficient on \(\left|{+}\right\rangle \) real and positive. If I were to use also set the phase of the coefficient of \(\left|{-}\right\rangle \) to be zero, i.e. if I simply chose \(\left|{\psi_i}\right\rangle = A_i \left|{+}\right\rangle + B_i \left|{-}\right\rangle \) I might not be able to write some states, since probabilities in measurements do depend on the relative phase in a state. (See one of the previous homework problems.)
Here, I will show how to find \(\left|{\psi_4}\right\rangle \), since it is the hardest case and then make some general comments.
The experimental results for the probabilities are, \begin{align*} & {P}(S_z = +\hbar/2) &= \frac{1}{4} \quad & {P}(S_z = -\hbar/2) &= \frac{3}{4} \\[6pt] & {P}(S_x=+\hbar/2) &= \frac{1}{2} \quad & {P}(S_x=-\hbar/2) &= \frac{1}{2} \\[6pt] & {P}(S_y=+\hbar/2) &= \frac{93}{100} \quad & {P}(S_y = -\hbar/2) &= \frac{7}{100} \end{align*}
Since I want to write \(\left|{\psi_4}\right\rangle \) in the \(\,\widehat{\!S}_z\) basis, I'll use those results first. \begin{align*} \mathcal{P}(S_z = +\hbar/2) &= \left|\left\langle {+}\middle|{\psi_4}\right\rangle \right|^2 \\ &= \left| \left\langle {+}\right| \Big( a_4 \left|{+}\right\rangle + b_4 e^{i\phi_4} \left|{-}\right\rangle \Big) \right|^2 \\ &= \frac{1}{4}\\ &\Rightarrow \ \left|a_4\right|^2 = \left(a_4\right)^2 = \frac{1}{4}, \\ a_4 &= \frac{1}{2} \\[6pt] \mathcal{P}(S_z = +\hbar/2) &= \left|\left\langle {-}\middle|{\psi_4}\right\rangle \right|^2 \\ &= \left| \left\langle {-}\right| \Big( a_4 \left|{+}\right\rangle + b_4 e^{i\phi_4} \left|{-}\right\rangle \Big) \right|^2\\ &= \frac{3}{4}\\ &\Rightarrow \ \left|b_4 e^{i\phi_4} \right|^2 = \left( b_4 \right)^2 = \frac{3}{4} \\ b_4 &= \frac{\sqrt{3}}{2} \end{align*}
did not get any information about \(\phi_4\).
Now use results of \(\,\widehat{\!S}_{x}\) and \(\,\widehat{\!S}_{y}\). Recall that I am working in the \(\,\widehat{\!S}_z\) basis, so I use expressions for \(\left|{\pm}\right\rangle _{x}\) and \(\left|{\pm}\right\rangle _{y}\) in that basis. \begin{align*} & \mathcal{P}(S_x = +\hbar/2) = \left|{}_x\left\langle {+}\middle|{\psi_4}\right\rangle \right|^2\\ &= \left| \frac{1}{\sqrt{2}} \Big( \left\langle {+}\right| + \left\langle {-}\right| \Big) \Big( \frac{1}{2} \left|{+}\right\rangle + \frac{\sqrt{3}}{2} e^{i\phi_4} \left|{-}\right\rangle \Big) \right|^2 \\ &= \frac{1}{2} \\ \rightarrow \frac{1}{2} &= \ \left| \frac{1}{2\sqrt{2}} + \frac{\sqrt{3}}{2\sqrt{2}} e^{i\phi_4} \right|^2 \\ &= \left( \frac{1}{2\sqrt{2}} + \frac{\sqrt{3}}{2\sqrt{2}} e^{-i\phi_4} \right) \left( \frac{1}{2\sqrt{2}} + \frac{\sqrt{3}}{2\sqrt{2}} e^{i\phi_4} \right) \\ &= \frac{1}{8} \Big( 1 + 3 + \sqrt{3} \left( e^{i\phi_4} + e^{-i\phi_4} \right) \Big)\\ &= \frac{1}{4} \Big( 2 + \sqrt{3}\, \cos\phi_4 \Big), \\ &\rightarrow \cos\phi_4 =0. \end{align*}
This yields two possible solutions: \(\phi_4 =\pm \, \pi/2\).
To distinguish between these two possible angles, I need to calculate yet another probability. (Note that using \(\left|{-}\right\rangle _x\) will give us the same result as above. Why? Because the two probabilities contain the same information - if you know one, you know both.)
I'll use a result of measurement of \(\,\widehat{\!S}_y\). \begin{align*} \mathcal{P}(S_y = +\hbar/2) &= \left|{}_y\left\langle {+}\middle|{\psi_4}\right\rangle \right|^2\\ &= \left| \frac{1}{\sqrt{2}} \Big( \left\langle {+}\right| - i \left\langle {-}\right| \Big) \Big( \frac{1}{2} \left|{+}\right\rangle + \frac{\sqrt{3}}{2} e^{i\phi_4} \left|{-}\right\rangle \Big) \right|^2 \\ &= 0.93 \\ 0.93 &= \left| \frac{1}{2\sqrt{2}} - i \frac{\sqrt{3}}{2\sqrt{2}} e^{i\phi_4} \right|^2 \\ &= \left( \frac{1}{2\sqrt{2}} - i \frac{\sqrt{3}}{2\sqrt{2}} e^{i\phi_4} \right) \left( \frac{1}{2\sqrt{2}} + i \frac{\sqrt{3}}{2\sqrt{2}} e^{-i\phi_4} \right) \\ &= \frac{1}{8} \Big( 4 + i \sqrt{3}\, \Big( \underbrace{ e^{-i\phi_4} - e^{i\phi_4} }_{ = \, -2\,i\,\sin\,\phi_4 } \Big) \Big) \\ &= \frac{1}{4} \Big( 2 + \sqrt{3}\sin\phi_4 \Big) \\ &\rightarrow \sin\phi_4 \approx 1. \end{align*}
This is too close to \(1\) to resist. So this result says that \(\theta_4 = \frac{\pi}{2}\). This agrees with the previous calculation \(\cos(\pi/2)=0\). Thus we have found that the unknown state is:
\[ \left|{\psi_4}\right\rangle = \frac{1}{2}\left|{+}\right\rangle + \frac{\sqrt{3}}{2}\, e^{i \frac{\pi}{2}} \left|{-}\right\rangle \Big) \]
To find \(\left|{\psi_3}\right\rangle \) one runs through much the same procedure. \begin{eqnarray*} \left|{\psi_3}\right\rangle &=&\frac{1}{\sqrt{3}}\left|{+}\right\rangle +\frac{\sqrt{2}}{\sqrt{3}}e^{i\frac{\pi}{2}}\left|{-}\right\rangle \end{eqnarray*}
- Represent the unknown state with its phase factor, as \(\left|{\psi}\right\rangle = a\left|{+}\right\rangle + b e^{i\gamma}\left|{-}\right\rangle \).
- Calculate the unknowns \(a\) and \(b\) by projecting onto the \(z\)-basis. \begin{eqnarray*} \left\langle {+}\middle|{\psi}\right\rangle &=a \\ \left\langle {-}\middle|{\psi}\right\rangle &=b \\ \end{eqnarray*}
- Compare these equations to the probabilities from the experiment (which are the squares of the norms of these equations) and thereby identify \(a\) and \(b\).
- Project the unknown state \(\left|{\psi}\right\rangle \) onto the the bra \(\left\langle {+}\right|_{x}\) and compare to the probabilities from the experiment. This will give one equation for the unknown angle \(\gamma\).
- If there is still an ambiguity that says \(\gamma\) is one of two possible angles, repeat the step above by projecting onto the bra \(\left\langle {+}\right|_{y}\), which will give a second equation for the unknown angle \(\gamma\) which will remove the ambiguity.
From the spin reference sheet, we see that the spin-1/2 state which is pure spin up according to a Stern-Gerlach device oriented in the \(\hat{n}\) direction is given in the \(z\)-basis by: \[\left|{+}\right\rangle _n =\cos{\frac{\theta}{2}}\left|{+}\right\rangle + \sin{\frac{\theta}{2}}\, e^{i\phi}\, \left|{-}\right\rangle \] where \(\theta\) and \(\phi\) are the angles that describe the orientation of the Stern-Gerlach device in spherical coordinates. By comparing this expression to our expression for the unknown state, I infer the direction for which the unknown state is “spin up”. By running the unknown state through a Stern-Gerlach device in this orientation, we should get all of the particles coming out the “up” port with 100% probability.
No, in general, you need there are three unknowns, so you need three independent pieces of information to solve for them. The probabilities for two component-directions is only two pieces of independent information.
Determine \(N\) so that the state is normalized.
\begin{align*} 1 &= \left\langle {\psi_A}\middle|{\psi_A}\right\rangle \\ &= |N|^2 \bigg(\sqrt{3}\left\langle {+}\right|+e^{i\pi/3}\left\langle {-}\right|\bigg)\bigg(\sqrt{3}\left|{+}\right\rangle +e^{i\pi/3}\left|{-}\right\rangle \bigg)\\ &= |N|^2 \bigg(3 + 1\bigg)\\ \rightarrow N &= \frac{1}{2} \end{align*}
What values of the z-component of spin might you measure and with what probabilities?
Values are \(\pm \frac{\hbar}{2}\).
\begin{align*} \mathcal{P}(S_z = \hbar/2) &= |\left\langle {+}\middle|{\psi_A}\right\rangle |^2\\ &= \frac{3}{4} \\ \mathcal{P}(S_z = -\hbar/2) &= |\left\langle {+}\middle|{\psi_A}\right\rangle |^2\\ &= \frac{1}{4} \\ \end{align*}
What values of the y-component of spin might you measure and with what probabilities?
Values are \(\pm \frac{\hbar}{2}\).
\begin{align*} \mathcal{P}(S_y = \hbar/2) &= |\,{}_y\left\langle {+}\middle|{\psi_A}\right\rangle |^2\\ &=| \Big(\frac{1}{\sqrt{2}}\left\langle {+}\right| -\frac{i}{\sqrt{2}}\left\langle {-}\right| \Big) \bigg(\frac{\sqrt{3}}{2}\left|{+}\right\rangle +\frac{e^{i\pi/3}}{2}\left|{-}\right\rangle \bigg)|^2\\ &= | \Big(\frac{1}{\sqrt{2}}\frac{\sqrt{3}}{2} -\frac{i}{\sqrt{2}}\frac{e^{i\pi/3}}{2} \Big)|^2\\ &= \frac{1}{8} | \sqrt{3}-ie^{i\pi/3}|^2\\ &= \frac{1}{8} ( \sqrt{3}-ie^{i\pi/3})( \sqrt{3}+ie^{-i\pi/3})\\ &= \frac{1}{8} (3+1 -i\sqrt{3}e^{i\pi/3} + i\sqrt{3}e^{-i\pi/3}) \\ &= \frac{1}{8} (3+1 -i\sqrt{3}(e^{i\pi/3} - e^{-i\pi/3})) \\ &= \frac{1}{8} (4 -i\sqrt{3}(2i\sin\frac{\pi}{3})) \\ &= \frac{1}{2} + \frac{2}{8}\sqrt{3} \frac{\sqrt{3}}{2} \\ &= \frac{7}{8}\\ \mathcal{P}(S_y = -\hbar/2) &= |\,{}_y\left\langle {+}\middle|{\psi_A}\right\rangle |^2\\ &= 1-\mathcal{P}(S_y = \hbar/2)\\ &= \frac{1}{8} \\ \end{align*}
Write this state in the \(S_x\) basis (i.e., as a linear superposition of \(|+\rangle_x\) and \(|-\rangle_x\)).
\begin{align*} I\left|{\psi_A}\right\rangle &= \Big(\left|{+}\right\rangle _x {}_x\left\langle {+}\right| + \left|{-}\right\rangle _x {}_x\left\langle {-}\right| \Big) \bigg(\frac{\sqrt{3}}{2}\left|{+}\right\rangle +\frac{e^{i\pi/3}}{2}\left|{-}\right\rangle \bigg)\\ &= \bigg(\left|{+}\right\rangle _x {}_x\left\langle {+}\right|\frac{\sqrt{3}}{2}\left|{+}\right\rangle + \left|{+}\right\rangle _x {}_x\left\langle {+}\right|\frac{e^{i\pi/3}}{2}\left|{-}\right\rangle \\ & + \left|{-}\right\rangle _x {}_x\left\langle {-}\right|\frac{\sqrt{3}}{2}\left|{+}\right\rangle + \left|{-}\right\rangle _x {}_x\left\langle {-}\right|\frac{e^{i\pi/3}}{2}\left|{-}\right\rangle \bigg)\\ &= \frac{\sqrt{3}}{2}\frac{1}{\sqrt{2}}\left|{+}\right\rangle _x + \frac{e^{i\pi/3}}{2}\frac{1}{\sqrt{2}}\left|{+}\right\rangle _x \\ & + \frac{\sqrt{3}}{2}\frac{1}{\sqrt{2}}\left|{-}\right\rangle _x + \frac{e^{i\pi/3}}{2}\frac{-1}{\sqrt{2}}\left|{-}\right\rangle _x \\ &= \frac{\sqrt{3}+e^{i\pi/3}}{2\sqrt{2}}\left|{+}\right\rangle _x + \frac{\sqrt{3}-e^{i\pi/3}}{2\sqrt{2}}\left|{-}\right\rangle _x \end{align*}
In what direction would you have to orient a Stern-Gerlach analyzer so that ALL the particles prepared in the state \(\left|{\psi_A}\right\rangle \) would be measured to have a spin component in that direction equal to \(+\hbar/2\)? Give the direction in spherical coordinates, \(\theta\) and \(\phi\).
\begin{align*} \left\langle {+}\middle|{+}\right\rangle _n &= \left\langle {+}\middle|{\psi_A}\right\rangle \\ \cos \frac{\theta}{2} &= \frac{\sqrt{3}}{2} \\ \frac{\theta}{2} &= \frac{\pi}{6}\\ \theta &= \frac{\pi}{3}\\[12pt] \phi &= \frac{\pi}{3} \end{align*}