\[\sigma_x= \begin{pmatrix} 0&1\\ 1&0\\ \end{pmatrix} \Rightarrow \left\vert \begin{matrix} \lambda&-1\\-1&\lambda\\ \end{matrix} \right\vert=0=\lambda^2-1 \Rightarrow\lambda=1,-1\] For \(\lambda=1\), \[ \begin{pmatrix} 0&1\\ 1&0\\ \end{pmatrix} \begin{pmatrix} x\\ y\\ \end{pmatrix} =1 \begin{pmatrix} x\\ y\\ \end{pmatrix} \Rightarrow y=x \Rightarrow \vert v\rangle_1= \begin{pmatrix} 1\\ 1\\ \end{pmatrix} \Rightarrow \vert\hat v\rangle_1 =\frac{1}{ \sqrt 2} \begin{pmatrix} 1\\ 1\\ \end{pmatrix} \] For \(\lambda=-1\), \[ \begin{pmatrix} 0&1\\ 1&0\\ \end{pmatrix} \begin{pmatrix} x\\ y\\ \end{pmatrix} =-1 \begin{pmatrix} x\\ y\\ \end{pmatrix} \Rightarrow y=-x \;\Rightarrow \; \vert v\rangle_{-1} = \begin{pmatrix} -1\\ 1\\ \end{pmatrix} \;\Rightarrow\; \vert\hat v\rangle_{-1} =\frac{1}{ \sqrt 2} \begin{pmatrix} -1\\ 1\\ \end{pmatrix} \]
\[\sigma_y= \begin{pmatrix} 0&-i\\ i&0\\ \end{pmatrix} \Rightarrow \left\vert \begin{matrix} \lambda&i\\-i&\lambda\\ \end{matrix} \right\vert=0=\lambda^2-1 \Rightarrow\lambda=1,-1\] For \(\lambda=1\), \[ \begin{pmatrix} 0&-i\\ i&0\\ \end{pmatrix} \begin{pmatrix} x\\ y\\ \end{pmatrix} =1 \begin{pmatrix} x\\ y\\ \end{pmatrix} \Rightarrow -iy=x \Rightarrow \vert v\rangle_1= \begin{pmatrix} 1\\ i\\ \end{pmatrix} \Rightarrow \vert\hat v\rangle_1 =\frac{1}{ \sqrt 2} \begin{pmatrix} 1\\ i\\ \end{pmatrix} \] For \(\lambda=-1\), \[ \begin{pmatrix} 0&-i\\ i&0\\ \end{pmatrix} \begin{pmatrix} x\\ y\\ \end{pmatrix} =-1 \begin{pmatrix} x\\ y\\ \end{pmatrix} \Rightarrow iy=x \;\Rightarrow \; \vert v\rangle_{-1} = \begin{pmatrix} 1\\ -i\\ \end{pmatrix} \;\Rightarrow\; \vert\hat v\rangle_{-1} =\frac{1}{ \sqrt 2} \begin{pmatrix} 1\\ -i\\ \end{pmatrix} \]
\[\sigma_z= \begin{pmatrix} 1&0\\ 0&-1\\ \end{pmatrix} \Rightarrow \left\vert \begin{matrix} \lambda-1&0\\0&\lambda+1\\ \end{matrix} \right\vert=0=\lambda^2-1 \Rightarrow\lambda=1,-1\] For \(\lambda=1\), \[ \begin{pmatrix} 1&0\\ 0&-1\\ \end{pmatrix} \begin{pmatrix} x\\ y\\ \end{pmatrix} =1 \begin{pmatrix} x\\ y\\ \end{pmatrix} \Rightarrow x=x, y=-y \Rightarrow \vert\hat v\rangle_1 = \begin{pmatrix} 1\\ 0\\ \end{pmatrix} \] For \(\lambda=-1\), \[ \begin{pmatrix} 1&0\\ 0&-1\\ \end{pmatrix} \begin{pmatrix} x\\ y\\ \end{pmatrix} =-1 \begin{pmatrix} x\\ y\\ \end{pmatrix} \Rightarrow x=-x, y=y \;\Rightarrow \; \vert\hat v\rangle_{-1} = \begin{pmatrix} 0\\ 1\\ \end{pmatrix} \]
\[A_1= \begin{pmatrix} 0&1\\ -1&0\\ \end{pmatrix} \Rightarrow \left\vert \begin{matrix} \lambda&-1\\1&\lambda\\ \end{matrix} \right\vert=0=\lambda^2+1 \Rightarrow\lambda=i,-i\] For \(\lambda=i\), \[ \begin{pmatrix} 0&1\\ -1&0\\ \end{pmatrix} \begin{pmatrix} x\\ y\\ \end{pmatrix} =i \begin{pmatrix} x\\ y\\ \end{pmatrix} \Rightarrow y=ix \Rightarrow \vert v\rangle_i= \begin{pmatrix} 1\\ i\\ \end{pmatrix} \Rightarrow \vert\hat v\rangle_i =\frac{1}{ \sqrt 2} \begin{pmatrix} 1\\ i\\ \end{pmatrix} \] For \(\lambda=-i\), \[ \begin{pmatrix} 0&1\\ -1&0\\ \end{pmatrix} \begin{pmatrix} x\\ y\\ \end{pmatrix} =-i \begin{pmatrix} x\\ y\\ \end{pmatrix} \Rightarrow y=-ix \;\Rightarrow \; \vert v\rangle_{-i} = \begin{pmatrix} 1\\ -i\\ \end{pmatrix} \;\Rightarrow\; \vert\hat v\rangle_{-i} =\frac{1}{ \sqrt 2} \begin{pmatrix} 1\\ -i\\ \end{pmatrix} \]
\[A_2= \begin{pmatrix} 0&-1\\ 1&0\\ \end{pmatrix} \Rightarrow \left\vert \begin{matrix} \lambda&1\\-1&\lambda\\ \end{matrix} \right\vert=0=\lambda^2+1 \Rightarrow\lambda=i,-i\] For \(\lambda=i\), \[ \begin{pmatrix} 0&-1\\ 1&0\\ \end{pmatrix} \begin{pmatrix} x\\ y\\ \end{pmatrix} =i \begin{pmatrix} x\\ y\\ \end{pmatrix} \Rightarrow y=-ix \Rightarrow \vert v\rangle_i= \begin{pmatrix} 1\\ -i\\ \end{pmatrix} \Rightarrow \vert\hat v\rangle_i =\frac{1}{ \sqrt 2} \begin{pmatrix} 1\\ -i\\ \end{pmatrix} \] For \(\lambda=-i\), \[ \begin{pmatrix} 0&-1\\ 1&0\\ \end{pmatrix} \begin{pmatrix} x\\ y\\ \end{pmatrix} =-i \begin{pmatrix} x\\ y\\ \end{pmatrix} \Rightarrow y=ix \Rightarrow \vert v\rangle_{-i} = \begin{pmatrix} 1\\ i\\ \end{pmatrix} \Rightarrow \vert\hat v\rangle_{-i} =\frac{1}{ \sqrt 2} \begin{pmatrix} 1\\ i\\ \end{pmatrix} \]
\[A_3= \begin{pmatrix} 0&1\\ 1&0\\ \end{pmatrix} \Rightarrow \left\vert \begin{matrix} \lambda&-1\\-1&\lambda\\ \end{matrix} \right\vert=0=\lambda^2-1 \Rightarrow\lambda=1, -1\] For \(\lambda=1\), \[ \begin{pmatrix} 0&1\\ 1&0\\ \end{pmatrix} \begin{pmatrix} x\\ y\\ \end{pmatrix} =1 \begin{pmatrix} x\\ y\\ \end{pmatrix} \Rightarrow y=x \Rightarrow \vert v\rangle_1= \begin{pmatrix} 1\\ 1\\ \end{pmatrix} \Rightarrow \vert\hat v\rangle_1 =\frac{1}{ \sqrt 2} \begin{pmatrix} 1\\ 1\\ \end{pmatrix} \] For \(\lambda=-1\), \[ \begin{pmatrix} 0&1\\ 1&0\\ \end{pmatrix} \begin{pmatrix} x\\ y\\ \end{pmatrix} =-1 \begin{pmatrix} x\\ y\\ \end{pmatrix} \Rightarrow y=-x \Rightarrow \vert v\rangle_{-1} = \begin{pmatrix} 1\\ -1\\ \end{pmatrix} \;\Rightarrow\; \vert\hat v\rangle_{-1} =\frac{1}{ \sqrt 2} \begin{pmatrix} 1\\ -1\\ \end{pmatrix} \]
\[A_4= \begin{pmatrix} 1&0\\0&-1\\ \end{pmatrix} \Rightarrow \left\vert \begin{matrix} \lambda-1&0\\ 0&\lambda+1\\ \end{matrix} \right\vert=0 =(\lambda+1)(\lambda-1) \Rightarrow\lambda=1, -1\] For \(\lambda=1\), \[ \begin{pmatrix} 1&0\\ 0&-1\\ \end{pmatrix} \begin{pmatrix} x\\ y\\ \end{pmatrix} =1 \begin{pmatrix} x\\ y\\ \end{pmatrix} \Rightarrow x=x,~y=-y \Rightarrow \vert v\rangle_1=\vert\hat v\rangle_1 = \begin{pmatrix} 1\\ 0\\ \end{pmatrix} \] For \(\lambda=-1\), \[ \begin{pmatrix} 1&0\\ 0&-1\\ \end{pmatrix} \begin{pmatrix} x\\ y\\ \end{pmatrix} =-1 \begin{pmatrix} x\\ y\\ \end{pmatrix} \Rightarrow x=-x,~y=y \Rightarrow \vert v\rangle_{-1} =\vert\hat v\rangle_{-1} = \begin{pmatrix} 0\\ 1\\ \end{pmatrix} \]
\[A_5= \begin{pmatrix} -1&0\\ 0&-1\\ \end{pmatrix} \Rightarrow \left\vert \begin{matrix} \lambda+1&0\\0&\lambda+1\\ \end{matrix} \right\vert=0=(\lambda+1)^2 \Rightarrow\lambda=-1, {\rm degenerate}\] For \(\lambda=-1\), \[ \begin{pmatrix} -1&0\\ 0&-1\\ \end{pmatrix} \begin{pmatrix} x\\ y\\ \end{pmatrix} =-1 \begin{pmatrix} x\\ y\\ \end{pmatrix} \Rightarrow x=x,~y=y \Rightarrow \vert v\rangle_{-1} =\vert\hat v\rangle_{-1} = \begin{pmatrix} 1\\ 0\\ \end{pmatrix} ,\; \begin{pmatrix} 0\\ 1\\ \end{pmatrix} \] Any linear combination of these two eigenvectors is also an eigenvector. Because of the degeneracy, the eigenvectors form a two-dimensional space. \[A_6= \begin{pmatrix} 1&2\\ 1&2\\ \end{pmatrix} \Rightarrow \left\vert \begin{matrix} \lambda-1&-2\\ -1&\lambda-2\\ \end{matrix} \right\vert=0 =(\lambda-1)(\lambda-2)-2 \Rightarrow\lambda=0, 3\] For \(\lambda=0\), \[ \begin{pmatrix} 1&2\\ 1&2\\ \end{pmatrix} \begin{pmatrix} x\\ y\\ \end{pmatrix} =0 \begin{pmatrix} x\\ y\\ \end{pmatrix} \Rightarrow x=-2y \Rightarrow \vert v\rangle_0= \begin{pmatrix} -2\\ 1\\ \end{pmatrix} \Rightarrow \vert\hat v\rangle_0 =\frac{1}{ \sqrt 5} \begin{pmatrix} -2\\ 1\\ \end{pmatrix} \] For \(\lambda=3\), \[ \begin{pmatrix} 1&2\\ 1&2\\ \end{pmatrix} \begin{pmatrix} x\\ y\\ \end{pmatrix} =3 \begin{pmatrix} x\\ y\\ \end{pmatrix} \Rightarrow x=y \Rightarrow \vert v\rangle_3= \begin{pmatrix} 1\\ 1\\ \end{pmatrix} \Rightarrow \vert\hat v\rangle_3 =\frac{1}{ \sqrt 2} \begin{pmatrix} 1\\ 1\\ \end{pmatrix} \]
\[A_7= \begin{pmatrix} 1&2\\ 9&4\\ \end{pmatrix} \Rightarrow \left\vert \begin{matrix} \lambda-1&-2\\ -9&\lambda-4\\ \end{matrix} \right\vert=0 =(\lambda-1)(\lambda-4)-18 \Rightarrow\lambda=7, -2\] For \(\lambda=7\), \[ \begin{pmatrix} 1&2\\ 9&4\\ \end{pmatrix} \begin{pmatrix} x\\ y\\ \end{pmatrix} =7 \begin{pmatrix} x\\ y\\ \end{pmatrix} \Rightarrow y=3x \Rightarrow \vert v\rangle_7= \begin{pmatrix} 1\\ 3\\ \end{pmatrix} \Rightarrow \vert\hat v\rangle_7 =\frac{1}{ \sqrt{10}} \begin{pmatrix} 1\\ 3\\ \end{pmatrix} \] For \(\lambda=-2\), \[ \begin{pmatrix} 1&2\\ 9&4\\ \end{pmatrix} \begin{pmatrix} x\\ y\\ \end{pmatrix} =-2 \begin{pmatrix} x\\ y\\ \end{pmatrix} \;\Rightarrow \; 2y=-3x \Rightarrow \vert v\rangle_{-2} = \begin{pmatrix} 2\\ -3\\ \end{pmatrix} \;\Rightarrow\; \vert\hat v\rangle_{-2} =\frac{1}{ \sqrt{13}} \begin{pmatrix} 2\\ -3\\ \end{pmatrix} \]
\[A_8= \begin{pmatrix} 1&1\\ -1&1\\ \end{pmatrix} \Rightarrow \left\vert \begin{matrix} \lambda-1&-1\\ 1&\lambda-1\\ \end{matrix} \right\vert=0 =(\lambda-1)^2+1 \Rightarrow\lambda=1\pm i\] For \(\lambda=1+i\), \[ \begin{pmatrix} 1&1\\ -1&1\\ \end{pmatrix} \begin{pmatrix} x\\ y\\ \end{pmatrix} =(1+i) \begin{pmatrix} x\\ y\\ \end{pmatrix} \;\Rightarrow \; y=ix \Rightarrow \vert v\rangle_{(1+i)} = \begin{pmatrix} 1\\ i\\ \end{pmatrix} \;\Rightarrow\; \vert\hat v\rangle_{(1+i)} =\frac{1}{ \sqrt 2} \begin{pmatrix} 1\\ i\\ \end{pmatrix} \] For \(\lambda=1-i\), \[ \begin{pmatrix} 1&1\\ -1&1\\ \end{pmatrix} \begin{pmatrix} x\\ y\\ \end{pmatrix} =(1-i) \begin{pmatrix} x\\ y\\ \end{pmatrix} \,\Rightarrow \, y=-ix \,\Rightarrow \, \vert v\rangle_{(1-i)} = \begin{pmatrix} 1\\ -i\\ \end{pmatrix} \,\Rightarrow\, \vert\hat v\rangle_{(1-i)} =\frac{1}{ \sqrt 2} \begin{pmatrix} 1\\ -i\\ \end{pmatrix} \]
\[A_9= \begin{pmatrix} 2&0\\ 0&2\\ \end{pmatrix} \Rightarrow \left\vert \begin{matrix} \lambda-2&0\\ 0&\lambda-2\\ \end{matrix} \right\vert=0 =(\lambda-2)^2 \Rightarrow\lambda=2, {\rm degenerate}\] For \(\lambda=2\), \[ \begin{pmatrix} 2&0\\ 0&2\\ \end{pmatrix} \begin{pmatrix} x\\ y\\ \end{pmatrix} =2 \begin{pmatrix} x\\ y\\ \end{pmatrix} \Rightarrow x=x,~y=y \Rightarrow \vert v\rangle_2=\vert\hat v\rangle_2 = \begin{pmatrix} 1\\ 0\\ \end{pmatrix} \; \begin{pmatrix} 0\\1\\ \end{pmatrix} \] Any linear combination of these two eigenvectors is also an eigenvector. Because of the degeneracy, the eigenvectors form a two-dimensional space. \[A_{10} = \begin{pmatrix} 1&0\\ 0&0\\ \end{pmatrix} \Rightarrow \left\vert \begin{matrix} \lambda-1&0\\ 0&\lambda\\ \end{matrix} \right\vert=0 =(\lambda-1)(\lambda) \Rightarrow\lambda=0, 1\] For \(\lambda=0\), \[ \begin{pmatrix} 1&0\\ 0&0\\ \end{pmatrix} \begin{pmatrix} x\\ y\\ \end{pmatrix} =0 \begin{pmatrix} x\\ y\\ \end{pmatrix} \Rightarrow x=0 \Rightarrow \vert v\rangle_0=\vert\hat v\rangle_0= \begin{pmatrix} 0\\ 1\\ \end{pmatrix} \] For \(\lambda=1\), \[ \begin{pmatrix} 1&0\\ 0&0\\ \end{pmatrix} \begin{pmatrix} x\\ y\\ \end{pmatrix} =1 \begin{pmatrix} x\\ y\\ \end{pmatrix} \Rightarrow x=x,~y=0 \Rightarrow \vert v\rangle_1=\vert\hat v\rangle_1= \begin{pmatrix} 1\\ 0\\ \end{pmatrix} \]
Orthonormal means both orthogonal and normalized.
To show that the vectors are normalized, calculate \begin{align} \left\langle {\alpha}\middle|{\alpha}\right\rangle &=\frac{1}{\sqrt{2}} \begin{pmatrix}1&1\end{pmatrix}\;\frac{1}{\sqrt{2}} \begin{pmatrix}1\\1\end{pmatrix}\\ &= \frac{1}{{2}} \left( 1*1 + 1*1 \right) \\ &=1\\ \left\langle {\beta}\middle|{\beta}\right\rangle &=\frac{1}{\sqrt{2}} \begin{pmatrix}1&-1\end{pmatrix}\; \frac{1}{\sqrt{2}}\begin{pmatrix}1\\-1\end{pmatrix}\\ &= \frac{1}{{2}} \left( 1*1 + (-1)*(-1) \right) \\ &=1 \end{align}
To show that the vectors are orthogonal, calculate \begin{align} \langle\beta|\alpha\rangle &= \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}\\ &= \frac{1}{{2}} \left( 1*1 + (-1)*1 \right) \\ &= 0 \end{align}
\(C|\alpha\rangle \doteq \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 4 \\ 4 \end{pmatrix} = 4|\alpha\rangle\)
\(C|\beta\rangle \doteq \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 2 \\ -2 \end{pmatrix} = 2|\beta\rangle\)So \(\left|{\alpha}\right\rangle \) is an eigenvector with eigenvalue 4 and \(\left|{\beta}\right\rangle \) is an eigenvector with eigenvalue 2.
\(\langle\alpha|C|\alpha\rangle = \frac{1}{{2}} \begin{pmatrix} 1 & 1 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \frac{1}{{2}} \begin{pmatrix} 1 & 1 \end{pmatrix} \begin{pmatrix} 4 \\ 4 \end{pmatrix} = 4\)
\(\langle\alpha|C|\beta\rangle = \frac{1}{{2}} \begin{pmatrix} 1 & 1 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \frac{1}{{2}} \begin{pmatrix} 1 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ -2 \end{pmatrix} = 0\)
\(\langle\beta|C|\alpha\rangle = \frac{1}{{2}} \begin{pmatrix} 1 & -1 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \frac{1}{{2}} \begin{pmatrix} 1 & -1 \end{pmatrix} \begin{pmatrix} 4 \\ 4 \end{pmatrix} = 0\)
\(\langle\beta|C|\beta\rangle = \frac{1}{{2}} \begin{pmatrix} 1 & -1 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \frac{1}{{2}} \begin{pmatrix} 1 & -1 \end{pmatrix} \begin{pmatrix} 2 \\ -2 \end{pmatrix} = 2\)\[E=\begin{pmatrix} 4&0\\0&2 \end{pmatrix}\]
\(\left| \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix} \right| = 9 - 1 = 8 \\ \left| \begin{pmatrix} 4 & 0 \\ 0 & 2 \end{pmatrix} \right| = 8\\\) The determinants for the two matrices are the same, and each is equal to the product of the eigenvalues.
\begin{eqnarray*} 0 &=& \left\vert \begin{pmatrix} \cos\theta-\lambda &\sin\theta\,e^{-i\phi}\\ \sin\theta\, e^{i\phi}&-\cos\theta-\lambda \end{pmatrix} \right\vert \\ {} &=& -(\cos\theta-\lambda)(\cos\theta+\lambda)-\sin^2\theta \\ {} &=& (\lambda^2-\cos^2\theta)-\sin^2\theta \\ {} &=& \lambda^2-1 \\ {} &\Rightarrow& \lambda=\pm 1 \end{eqnarray*} For \(\lambda=1\): \[ \begin{pmatrix} \cos\theta&\sin\theta\, e^{-i\phi}\\\sin\theta\, e^{i\phi}&-\cos\theta\\ \end{pmatrix} \, \begin{pmatrix} x\\ y\\ \end{pmatrix} = +1\, \begin{pmatrix} x\\ y\\ \end{pmatrix} \] \(\Rightarrow\) \[y=\frac{1-\cos\theta}{\sin\theta}\, e^{i\phi}\, x =\tan\frac{\theta}{2}\, e^{i\phi}\, x =\frac{\sin\frac{\theta}{2}}{\cos\frac{\theta}{2}}\, e^{i\phi}\, x \] If you choose \(x=1\), then the eigenvector is \[\vert v\rangle_1 \doteq \begin{pmatrix} 1\\ \tan\frac{\theta}{2}\, e^{i\phi} \end{pmatrix} \] and the norm squared is \[_1\langle v\vert v\rangle_1 \doteq \begin{pmatrix} 1&\tan\frac{\theta}{2}\, e^{-i\phi}\\ \end{pmatrix} \begin{pmatrix} 1\\ \tan\frac{\theta}{2}\, e^{i\phi}\\ \end{pmatrix} =1+\tan^2\frac{\theta}{2} =\frac{1}{\cos^2\frac{\theta}{2}}\] And the norm is \[\sqrt{_1\langle v\vert v\rangle_1} =\frac{1}{\cos\frac{\theta}{2}}\] Therefore, for normalized vectors, divide by the norm above, and adjust the phase: \[\vert v\rangle_1 \doteq e^\frac{i\phi}{2} \begin{pmatrix} \cos\frac{\theta}{2}e^\frac{-i\phi}{2}\\ (\cos\frac{\theta}{2})(\tan\frac{\theta}{2})\, e^\frac{i\phi}{2} \end{pmatrix} \] \[\vert \hat v\rangle_1 \doteq \begin{pmatrix} x\\ y\\ \end{pmatrix} = \begin{pmatrix} \cos\frac{\theta}{2}\,e^{-i\phi/2}\\ {} \sin\frac{\theta}{2}\,e^{i\phi/2}\\ \end{pmatrix} \] Note that in the last line I've dropped the overall phase. This choice of phase is just convention, albeit a nicely symmetric one. You can multiply both components of this eigenvector by the same overall phase and still have a normalized eigenvector.
For \(\lambda=-1\): \[ \begin{pmatrix} \cos\theta&\sin\theta\, e^{-i\phi}\\\sin\theta\, e^{i\phi}&-\cos\theta\\ \end{pmatrix} \, \begin{pmatrix} x\\ y\\ \end{pmatrix} = -1\, \begin{pmatrix} x\\ y\\ \end{pmatrix} \] \(\Rightarrow\) \[x=\frac{1-\cos\theta}{-\sin\theta}\, e^{-i\phi}\, y =-\tan\frac{\theta}{2}\, e^{-i\phi}\, y =-\frac{\sin\frac{\theta}{2}}{\cos\frac{\theta}{2}}\, e^{-i\phi}\, y \] If you choose, \(y=1\), then the eigenvector is: \[\vert v\rangle_{-1} \doteq \begin{pmatrix} -\tan\frac{\theta}{2}\, e^{-i\phi}\\1\\ \end{pmatrix} \] and the norm squared is: \[_{-1}\langle v\vert v\rangle_{-1} \doteq \begin{pmatrix} -\tan\frac{\theta}{2}\, e^{i\phi}&1\\ \end{pmatrix} \begin{pmatrix} -\tan\frac{\theta}{2}\, e^{-i\phi}\\ 1\\ \end{pmatrix} =1+\tan^2\frac{\theta}{2} =\frac{1}{\cos^2\frac{\theta}{2}}\] Therefore, for normalized vectors, divide by the norm above, and adjust the phase: \[\vert \hat v\rangle_{-1} \doteq \begin{pmatrix} x\\ y\\ \end{pmatrix} = \begin{pmatrix} -\sin\frac{\theta}{2}\,e^{-i\phi/2}\\ {} \cos\frac{\theta}{2}\,e^{i\phi/2}\\ \end{pmatrix} \] Note that this choice of phase is just convention, albeit a nicely symmetric one. You can multiply both components of this eigenvector by the same overall phase and still have a normalized eigenvector.
\[_{-1}\langle \hat v\vert \hat v\rangle_1 \doteq \begin{pmatrix} -\sin\frac{\theta}{2}\, e^{i\phi/2}& \cos\frac{\theta}{2}\, e^{-i\phi/2}\\ \end{pmatrix} \begin{pmatrix} \cos\frac{\theta}{2}\, e^{-i\phi/2}\\{} \sin\frac{\theta}{2}\, e^{i\phi/2}\\ \end{pmatrix} =-\sin\frac{\theta}{2}\, \cos\frac{\theta}{2} +\cos\frac{\theta}{2}\, \sin\frac{\theta}{2} =0\]
Notice that the eigenvalues \(\lambda=\pm 1\) are independent of the value of \(\hat n\).
If \(\hat n =\hat\imath\), then \(\theta=\frac{\pi}{2}\) and \(\phi=0\), and \(\hat n \cdot \vec \sigma=\sigma_x\). \[\vert\hat v\rangle_1 \rightarrow \begin{pmatrix} \cos\frac{\pi}{4}\\ \sin\frac{\pi}{4}\\ \end{pmatrix} =\frac{1}{\sqrt2} \begin{pmatrix} 1\\ 1\\ \end{pmatrix} \] \[\vert\hat v\rangle_{-1} \rightarrow \begin{pmatrix} -\sin\frac{\pi}{4}\\ \cos\frac{\pi}{4}\\ \end{pmatrix} =\frac{1}{\sqrt2} \begin{pmatrix} -1\\ 1\\ \end{pmatrix} \]
If \(\hat n =\hat\jmath\), then \(\theta=\frac{\pi}{2}\) and \(\phi=\frac{\pi}{2}\), and \(\hat n \cdot \vec \sigma=\sigma_y\). \[\vert\hat v\rangle_1 \rightarrow \begin{pmatrix} \cos\frac{\pi}{4}\, e^{-i\frac{\pi}{4}}\\ \sin\frac{\pi}{4} \end{pmatrix} \, e^{i\frac{\pi}{4}}\\ =\frac{1}{2} \begin{pmatrix} 1-i\\ 1+i\\ \end{pmatrix} =\frac{1}{\sqrt2} \begin{pmatrix} 1\\ i\\ \end{pmatrix} e^\frac{-i\pi}{4} \] \[\vert\hat v\rangle_{-1} \rightarrow \begin{pmatrix} -\sin\frac{\pi}{4}\, e^{-i\frac{\pi}{4}}\\ \cos\frac{\pi}{4}\, e^{i\frac{\pi}{4}}\\ \end{pmatrix} =\frac{1}{2} \begin{pmatrix} -1+i\\ 1+i\\ \end{pmatrix} =\frac{1}{\sqrt{2}} \begin{pmatrix} 1\\ -i\\ \end{pmatrix} e^\frac{3i\pi}{4} \]
If \(\hat n =\hat k\), then \(\theta=0\) and you can choose \(\phi=0\), and \(\hat n \cdot \vec \sigma=\sigma_z\). \[\vert\hat v\rangle_1 \rightarrow \begin{pmatrix} \cos 0\\ \sin 0\\ \end{pmatrix} = \begin{pmatrix} 1\\ 0\\ \end{pmatrix} \] \[\vert\hat v\rangle_{-1} \rightarrow \begin{pmatrix} -\sin 0\\ \cos 0\\ \end{pmatrix} = \begin{pmatrix} 0\\ 1\\ \end{pmatrix} \] These answers are the same as those in part (a) above. Note, however, that I have adjusted the phases (i.e. multiplied by an overall constant of magnitude 1) to put these answers in the same form as part (a).