Quantum Fundamentals: Winter-2024
Matrix Practice : Due Day 10 F 2/23 Math Bits

  1. Matrix Refresher S0 4962S Calculate the following quantities for the matrices: \[A\doteq \begin{pmatrix} 1&0&0\\ 0&0&1\\ 0&-1&0\\ \end{pmatrix} \hspace{2em} B\doteq \begin{pmatrix} a&b&c\\ d&e&f\\ g&h&j\\ \end{pmatrix} \hspace{2em} C\doteq \begin{pmatrix} \cos\theta&-\sin\theta\\\sin\theta&\cos\theta\\ \end{pmatrix} \] and the vectors: \[\left|D\right\rangle\doteq \begin{pmatrix} 1\\ i\\ -1\\ \end{pmatrix} \hspace{2em} \left|E\right\rangle\doteq \begin{pmatrix} 1\\ i\\ \end{pmatrix} \hspace{2em} \left|F\right\rangle\doteq \begin{pmatrix} 1\\ -1\\ \end{pmatrix} \]
    1. \(AB\)
    2. \({\rm tr} (AB)\)
    3. \(C^{-1}\)
    4. \(A\vert D\rangle\)
    5. \(\det(\lambda{\cal I}-A)\) where \(\lambda\) is a scalar.
  2. Pauli Practice S0 4962S The Pauli spin matrices \(\sigma_x\), \(\sigma_y\), and \(\sigma_z\) are defined by: \[\sigma_x= \begin{pmatrix} 0&1\\ 1&0\\ \end{pmatrix} \hspace{2em} \sigma_y= \begin{pmatrix} 0&-i\\ i&0\\ \end{pmatrix} \hspace{2em} \sigma_z= \begin{pmatrix} 1&0\\ 0&-1\\ \end{pmatrix} \] These matrices are related to angular momentum in quantum mechanics. Prove, and become familiar with, the identities listed below.
    1. Show that each of the Pauli matrices is hermitian. (A matrix is hermitian if it is equal to its hermitian adjoint.)
    2. Show that the determinant of each of the Pauli matrices is \(-1\).
    3. Show that \(\sigma_i^2={\cal I}\) for each of the Pauli matrices, i.e. for \(i\in\left\{x,y,z\right\}\).
  3. Hermitian Adjoints S0 4962S Calculate the following quantities for the matrices: \[A\doteq \begin{pmatrix} 1&0&0\\ 0&0&1\\ 0&-1&0\\ \end{pmatrix} \hspace{2em} B\doteq \begin{pmatrix} a&b&c\\ d&e&f\\ g&h&j\\ \end{pmatrix} \hspace{2em} C\doteq \begin{pmatrix} \cos\theta&-\sin\theta\\\sin\theta&\cos\theta\\ \end{pmatrix} \] and the vectors: \[\left|D\right\rangle\doteq \begin{pmatrix} 1\\ i\\ -1\\ \end{pmatrix} \hspace{2em} \left|E\right\rangle\doteq \begin{pmatrix} 1\\ i\\ \end{pmatrix} \hspace{2em} \left|F\right\rangle\doteq \begin{pmatrix} 1\\ -1\\ \end{pmatrix} \]
    1. \(A^{\dagger}\)
    2. \(\vert E\rangle^{\dagger}\equiv\langle E\vert\)
    3. \(\langle D\vert A\vert D\rangle\)
    4. \(\left(A\vert D\rangle\right)^{\dagger}\)
    5. Using explicit matrix multiplication (without using a theorem) verify that \(\left(A\vert D\rangle\right)^{\dagger} =\langle D\vert A^{\dagger}\)
  4. Pauli S0 4962S The Pauli spin matrices \(\sigma_x\), \(\sigma_y\), and \(\sigma_z\) are defined by: \[\sigma_x= \begin{pmatrix} 0&1\\ 1&0\\ \end{pmatrix} \hspace{2em} \sigma_y= \begin{pmatrix} 0&-i\\ i&0\\ \end{pmatrix} \hspace{2em} \sigma_z= \begin{pmatrix} 1&0\\ 0&-1\\ \end{pmatrix} \] These matrices are related to angular momentum in quantum mechanics. Prove, and become familiar with, the identities listed below.
    1. Show that \(\sigma_x \sigma_y = i\sigma_z\) and \(\sigma_y \sigma_x = -i\sigma_z\). (Note: These identities also hold under a cyclic permutation of \(\left\{x,y,z\right\}\), e.g. \(x\rightarrow y\), \(y\rightarrow z\), and \(z\rightarrow x\)).
    2. The commutator of two matrices \(A\) and \(B\) is defined by \(\left[A, B\right]\buildrel \rm def \over = AB-BA\). Show that \(\left[\sigma_x, \sigma_y\right] = 2i\sigma_z\). (Note: This identity also holds under a cyclic permutation of \(\left\{x,y,z\right\}\), e.g. \(x\rightarrow y\), \(y\rightarrow z\), and \(z\rightarrow x\)).
    3. The anti-commutator of two matrices \(A\) and \(B\) is defined by \(\left\{A, B\right\}\buildrel \rm def \over = AB+BA\). Show that \(\left\{\sigma_x, \sigma_y\right\} = 0\). (Note: This identity also holds under a cyclic permutation of \(\left\{x,y,z\right\}\), e.g. \(x\rightarrow y\), \(y\rightarrow z\), and \(z\rightarrow x\)).
  5. Commutator S0 4962S Consider the following matrices: \[A= \begin{pmatrix} 0&1\\ 1&0\\ \end{pmatrix}\qquad B= \begin{pmatrix} 3&1\\ 1&3\\ \end{pmatrix}\qquad C= \begin{pmatrix} 1&0\\ 0&-1\\ \end{pmatrix} \]
    1. Explain what each of the matrices “does” geometrically when thought of as a linear transformation acting on a vector.
    2. The commutator of two matrices \(A\) and \(B\) is defined by \(\left[A, B\right]\buildrel \rm def \over = AB-BA\). Find the following commutators: \(\left[A,B\right]\), \(\left[A,C\right]\), \(\left[B,C\right]\).
    3. Two matrices are said to commute, if their commutator is zero. Thought of as linear transformations, two matrices commute if it doesn't matter in which order the transformations act. For all pairs of the matrices \(A\), \(B\), and \(C\), show geometrically that the order of the transformations doesn't matter when the matrices commute and does matter when they don't commute.
  6. Spin Matrix S0 4962S The Pauli spin matrices \(\sigma_x\), \(\sigma_y\), and \(\sigma_z\) are defined by: \[\sigma_x= \begin{pmatrix} 0&1\\ 1&0\\ \end{pmatrix} \hspace{2em} \sigma_y= \begin{pmatrix} 0&-i\\ i&0\\ \end{pmatrix} \hspace{2em} \sigma_z= \begin{pmatrix} 1&0\\ 0&-1\\ \end{pmatrix} \] These matrices are related to angular momentum in quantum mechanics.
    1. By drawing pictures, convince yourself that the arbitrary unit vector \(\hat n\) can be written as: \[\hat n=\sin\theta\cos\phi\, \hat x +\sin\theta\sin\phi\,\hat y+\cos\theta\,\hat z\] where \(\theta\) and \(\phi\) are the parameters used to describe spherical coordinates.
    2. Find the entries of the matrix \(\hat n\cdot\vec \sigma\) where the “matrix-valued-vector” \(\vec \sigma\) is given in terms of the Pauli spin matrices by \[\vec\sigma=\sigma_x\, \hat x + \sigma_y\, \hat y+\sigma_z\, \hat z\] and \(\hat n\) is given in part (a) above.