


1 Complex Arithmetic: Rectangular Form

For the complex numbers $z_1 = 3 - 4i$ and $z_2 = 7 + 2i$, compute:

- (a) $z_1 - z_2$
- (b) $z_1 z_2$
- (c) $\frac{z_1}{z_2}$

2 Circle Trigonometry and Complex Numbers

Find the rectangular coordinates of the point where the angle $\frac{5\pi}{3}$ meets the unit circle. If this were a point in the complex plane, what would be the rectangular and exponential forms of the complex number? (See figure.)

3 Complex Number Algebra, Exponential to Rectangular–Practice

If $z_1 = 5e^{7i\pi/4}$, $z_2 = 3e^{-i\pi/2}$, and $z_3 = 9e^{(1+i\pi)/3}$, express each of the following complex numbers in rectangular form, i.e. in the form $x + iy$ where x and y are real.

- (a) $z_1 + z_2$
- (b) $z_1 z_2$
- (c) $\frac{z_2}{z_3}$

4 Complex Numbers, All Forms—Practice

Represent the following four complex numbers in rectangular form $a + ib$, exponential form $|z|e^{i\phi}$, and on an Argand diagram:

- (a) $e^{i\pi}$
- (b) i
- (c) $\sin \frac{\pi}{2}$
- (d) $\cos \frac{\pi}{4} - i \sin \frac{\pi}{4}$