

1 Stern Gerlach Explain

- (a) Use words and equations to explain the key features of the Stern-Gerlach experiment.
- (b) *Contrast Classical/Quantum* Explain what you would predict based only on classical physics for the Stern-Gerlach experiment and describe the difference between the classical prediction and the actual experimental results.

2 Diagonalization

(2 pts each)

- (a) Let

$$|\alpha\rangle \doteq \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \quad \text{and} \quad |\beta\rangle \doteq \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

Show that $|\alpha\rangle$ and $|\beta\rangle$ are orthonormal. (If a pair of vectors is orthonormal, that suggests that they might make a good basis.)

- (b) Consider the matrix

$$C \doteq \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}$$

Show that the vectors $|\alpha\rangle$ and $|\beta\rangle$ are eigenvectors of C and find the eigenvalues. (Note that showing something is an eigenvector of an operator is far easier than finding the eigenvectors if you don't know them!)

- (c) A operator is always represented by a diagonal matrix if it is written in terms of the basis of its own eigenvectors. What does this mean? Find the matrix elements for a new matrix E that corresponds to C expanded in the basis of its eigenvectors, i.e. calculate $\langle \alpha | C | \alpha \rangle$, $\langle \alpha | C | \beta \rangle$, $\langle \beta | C | \alpha \rangle$ and $\langle \beta | C | \beta \rangle$ and arrange them into a sensible matrix E . Explain why you arranged the matrix elements in the order that you did.
- (d) Find the determinants of C and E . How do these determinants compare to the eigenvalues of these matrices?

3 Spin Matrix

(2 pts each)

The Pauli spin matrices σ_x , σ_y , and σ_z are defined by:

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \quad \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

These matrices are related to angular momentum in quantum mechanics.

(a) By drawing pictures, convince yourself that the arbitrary unit vector \hat{n} can be written as:

$$\hat{n} = \sin \theta \cos \phi \hat{x} + \sin \theta \sin \phi \hat{y} + \cos \theta \hat{z}$$

where θ and ϕ are the parameters used to describe spherical coordinates.

(b) Find the entries of the matrix $\hat{n} \cdot \vec{\sigma}$ where the “matrix-valued-vector” $\vec{\sigma}$ is given in terms of the Pauli spin matrices by

$$\vec{\sigma} = \sigma_x \hat{x} + \sigma_y \hat{y} + \sigma_z \hat{z}$$

and \hat{n} is given in part (a) above.