

1 Hermitian Adjoints

Calculate the following quantities for the matrices:

$$A \doteq \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix} \quad B \doteq \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & j \end{pmatrix} \quad C \doteq \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

and the vectors:

$$|D\rangle \doteq \begin{pmatrix} 1 \\ i \\ -1 \end{pmatrix} \quad |E\rangle \doteq \begin{pmatrix} 1 \\ i \end{pmatrix} \quad |F\rangle \doteq \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

- (a) A^\dagger
- (b) $|E\rangle^\dagger \equiv \langle E|$
- (c) $\langle D|A|D\rangle$
- (d) $(A|D\rangle)^\dagger$
- (e) Using explicit matrix multiplication (without using a theorem) verify that $(A|D\rangle)^\dagger = \langle D|A^\dagger$