At what velocity will an Earth-bound observer see the box if it is shot directly towards the Earth?
\(\frac{35c}{37}\)
\(f= 3x^3-e^{2x}\)
\(df=(9x^2-2e^{2x})dx\)
\(g = \sin(y^2)\)
\(dg = 2y\cos{(y^2)}dy\)
\(10z^3dz = dp/p\)
What is the speed of each of the pieces after the explosion?
Using momentum conservation:
\begin{align*} \vec{p}_i &= \vec{p_f} \\[6pt] \begin{bmatrix} 0\\ Mc \end{bmatrix} =& \begin{bmatrix} \gamma m v\\ \gamma m c \end{bmatrix} + \begin{bmatrix} -\gamma m v\\ \gamma m c \end{bmatrix}\\ \\ \end{align*}
Looking at the second entries only:
\begin{align*} Mc &= 2\gamma mc \\ \gamma &= \frac{M}{2m} \\ \frac{1}{\sqrt{1-(v/c)^2}} &= \frac{M}{2m} \\ 1-(v/c)^2 &= \frac{4m^2}{M^2} \\ v/c &= \sqrt{1-\frac{4m^2}{M^2}} \\ \end{align*}
The total relativistic kinetic energy of the two pieces is the rest energy of the initial clump minus the rest energy of the two pieces. \begin{align*} 2T = (M-2m)c^2 \\ T= \frac{(M-2m)c^2}{2} \end{align*}
Imagine that you have a light clock with a period T (1 “tick” takes time \(T\)).
Another observer moves relative to you with velocity \(+V\)
Your reference frame?
\begin{align*} \begin{bmatrix} x_{mine}\\ ct_{mine} \end{bmatrix} = \begin{bmatrix} 0\\ cT \end{bmatrix} \end{align*}
The other observer's frame?
\begin{align*} \begin{bmatrix} x'_{mine}\\ ct'_{mine} \end{bmatrix} = \begin{bmatrix} \gamma & -\beta\gamma \\ -\beta\gamma & \gamma \end{bmatrix} \begin{bmatrix} 0\\ cT \end{bmatrix} = \begin{bmatrix} \gamma cT\\ -\beta \gamma cT \end{bmatrix} \end{align*}
Now image that the other observer has an identical light clock. Draw a new spacetime diagram of 1 “tick” of the other observer's light clock.
The diagram could looks like one of the following:
![]()
The other observer's frame?
\begin{align*} \begin{bmatrix} x'_{theirs}\\ ct'_{theirs} \end{bmatrix} = \begin{bmatrix} 0\\ cT \end{bmatrix} \end{align*}
Your reference frame?
\begin{align*} \begin{bmatrix} x_{theirs}\\ t_{theirs} \end{bmatrix} = \begin{bmatrix} \gamma & +\beta\gamma \\ +\beta\gamma & \gamma \end{bmatrix} \begin{bmatrix} 0\\ cT \end{bmatrix} = \begin{bmatrix} \gamma cT\\ \beta \gamma cT \end{bmatrix} \end{align*}
If I compare the time coordinates of the tick of my friend's clock, I see the tick take \(\gamma cT\) while the other observer sees a shorter time \(cT\). Since I observe the tick taking a longer time that the other observer does, I say that their clock is running slow.
Similarly, if if I compare the time coordinates of the tick of my clock, I see the tick take \(cT\) while the other observer sees a longer time \(\gamma cT\). Since my clock is moving relative to the other observer, and they observe a longer time interval for the tick than I do, the other observer observes my clock running slow.
