AIMS Lie Groups: Fall-2022
Practice Exercises 2 : Due 02 Tue 6 Dec

  1. Vector Fields on $\mathbb{S}^3$ S0 4482S Show that the vector fields \begin{align*} r_z &= \partial_\phi ,\\ r_x &= -\sin\phi \,\partial_\theta - \cot\theta\cos\phi \,\partial_\phi + \csc\theta\cos\phi \,\partial_\psi ,\\ r_y &= \cos\phi \,\partial_\theta - \cot\theta\sin\phi \,\partial_\phi + \csc\theta\sin\phi \,\partial_\psi \end{align*} satisfy the expected commutation relations, that is, \begin{equation*} [r_x,r_y] = -r_z , \qquad [r_y,r_z] = -r_x , \qquad [r_z,r_x] = -r_y . \end{equation*}
  2. Orthogonal Groups S0 4482S Let \(SO(n)=\{M\in\mathbb{R}^{n\times n}:M^TM=1\}\) and \(\mathfrak{so}(n)=\{A\in\mathbb{R}^{n\times n}:A^T+A=0\}\), where \(\mathbb{R}^{n\times n}\) denotes the set of real \(n\times n\) matrices.
    1. Show that \(SO(n)\) is a group.
    2. Show that \(\mathfrak{so}(n)\) is a vector space.
    3. Show that if \(A,B\in\mathfrak{so}(n)\) then \([A,B]=AB-BA\in\mathfrak{so}(n)\).