AIMS Lie Groups: Fall-2022 Practice Exercises 1 : Due 01 Mon 5 Dec
Euler's Formula II
S0 4481S
Look up or derive the Taylor series expansions for \(\cos\theta\), \(\sin\theta\), and \(e^x\).
Show that \(e^{i\theta}=\cos\theta+i\sin\theta\).
Verify that \(e^{2i\theta}=(e^{i\theta})^2\) using trigonometric identities, that is, show that
\[
\cos2\theta+i\sin2\theta = (\cos\theta+i\sin\theta)^2
\]
The Rotation Group $SO(2)$
S0 4481S
Consider rotation matrices of the form
\[
M(\theta) = \begin{pmatrix}
\cos\theta&-\sin\theta\\\sin\theta&\cos\theta
\end{pmatrix}
\]