Activities
This very quick lecture reviews the content taught in https://paradigms.oregonstate.edu/courses/ph423, and is the first content in https://paradigms.oregonstate.edu/courses/ph441.
Students generate a list of properties a glass of water might have. The class then discusses and categorizes those properties.
Groups are asked to analyze the following standard problem:
Two identical lumps of clay of (rest) mass m collide head on, with each moving at 3/5 the speed of light. What is the mass of the resulting lump of clay?
These notes, from the third week of https://paradigms.oregonstate.edu/courses/ph441 cover the canonical ensemble and Helmholtz free energy. They include a number of small group activities.
In this activity students work out energy level transitions in hydrogen that lead to visible light.
Students use a completeness relations to write hydrogen atoms states in the energy and position bases.
Students examine a plastic "surface" graph of the gravitational potential energy of a Earth-satellite system to make connections between gravitational force and gravitational potential energy.
- Work as area under curve in a \(pV\) plot
- Heat transfer as area under a curve in a \(TS\) plot
- Reminder that internal energy is a state function
- Reminder of First Law
Expectation Values and UncertaintyYou have a system that consists of quantum particles with spin. On this system, you will perform a Stern-Gerlach experiment with an analyzer oriented in the \(z\)-direction.
Consider one of the different initial spin states described below:
A spin 1/2 particle described by:
- \(\left|{+}\right\rangle \)
- \(\frac{i}{2}\left|{+}\right\rangle -\frac{\sqrt{3}}{2}\left|{-}\right\rangle \)
\(\left|{+}\right\rangle _x\)
A spin 1 particle described by:
- \(\left|{0}\right\rangle \)
- \(\left|{-1}\right\rangle _x\)
- \(\frac{2}{3}\left|{1}\right\rangle +\frac{i}{3}\left|{0}\right\rangle -\frac{2}{3}\left|{-1}\right\rangle \)
List the possible values of spin you could measure and determine the probability associated with each value of the z-component of spin.
Plot a histogram of the probabilities.
Find the expectation value of the z-component of spin.
- Find the uncertainty of the z-component of spin.
Introduction
I like to break this activity into two parts:
(1) Calculating expectation values and relating them to the associated distributions of the probabilities of results, and
(2) Calculating the quantum uncertainty of the state and relating the uncertainty to distributions of the probabilities of results.
Therefore, I have my students do the first part of the activity before I introduce quantum uncertainty.
I introduce the activity by reminding students about two ways of calculating the expectation value. Given a quantum state \(\left|{\psi}\right\rangle \), for a measurement of an observable represented by an operator \(\hat{A}\) with eigenstates \(\left|{a_i}\right\rangle \) and eigenvalues \(a_i\): \begin{align*} \langle \hat{A} \rangle &= \sum_{i} a_i\mathcal{P}(a_i) \\ &= \left\langle {\psi}\right|\hat{A}\left|{\psi}\right\rangle \end{align*}
After the students calculate expectation values and we have a whole class discussion about 1 of the examples, then I do a lecture introducing the quantity of quantum uncertainty (relating it to the standard deviation of the distribution of probabilities by spin component value) and deriving the simplified equation:
\[\Delta A = \sqrt{\langle A^2 \rangle - \langle A \rangle ^2}\]
Student Conversations
One could have each group report out, or the instructor could discuss a few key examples.
For expectation value, I like to talk about Case 2: \(\frac{i}{2}\left|{+}\right\rangle -\frac{\sqrt{3}}{2}\left|{-}\right\rangle \), where the probabilities of the two outcomes are not equal to show how the weighting plays out. Also, the expectation value is not a possible measurement value, and I like to talk about that. “Expectation” value is a misleading name for this quantity - it characterizes the distribution and is not necessarily a result of an individual measurement.
I also like to discuss an example like Case 5: \(\left|{1}\right\rangle _x\) where the distribution is symmetric around \(0\hbar\).
I think it's important to encourage students to calculate expectation values both ways (with probabilities and as a bracket with matrix notation) while the teaching team is available to help them.
For quantum uncertainty, I like to talk about an example like Case 3: \(\left|{+}\right\rangle _x\) where all the individual measurements are the same ”distance” away from the expectation value as a sensemaking exercise to connect to a conceptual interpretation of physics.
I also like to discuss an example like Case 5: \(\left|{-1}\right\rangle _x\), where the fact that we're taking an rms average is apparent: half the measurements are \(\hbar\) away from the expectation value and the other half are \(0\hbar\) away, but the uncertainty is \(\hbar/\sqrt{2}\).
Problem
Consider the arbitrary Pauli matrix \(\sigma_n=\hat n\cdot\vec \sigma\) where \(\hat n\) is the unit vector pointing in an arbitrary direction.
- Find the eigenvalues and normalized eigenvectors for \(\sigma_n\). The answer is: \[ \begin{pmatrix} \cos\frac{\theta}{2}e^{-i\phi/2}\\{} \sin\frac{\theta}{2}e^{i\phi/2}\\ \end{pmatrix} \begin{pmatrix} -\sin\frac{\theta}{2}e^{-i\phi/2}\\{} \cos\frac{\theta}{2}e^{i\phi/2}\\ \end{pmatrix} \] It is not sufficient to show that this answer is correct by plugging into the eigenvalue equation. Rather, you should do all the steps of finding the eigenvalues and eigenvectors as if you don't know the answer. Hint: \(\sin\theta=\sqrt{1-\cos^2\theta}\).
- Show that the eigenvectors from part (a) above are orthogonal.
- Simplify your results from part (a) above by considering the three separate special cases: \(\hat n=\hat\imath\), \(\hat n=\hat\jmath\), \(\hat n=\hat k\). In this way, find the eigenvectors and eigenvalues of \(\sigma_x\), \(\sigma_y\), and \(\sigma_z\).
1-D Particle-in-a-box
Hamiltonian: \begin{align} \hat{H} &\doteq -\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2} \end{align} Eigenstates: \begin{align} \left|{n}\right\rangle &\doteq\sqrt{\frac{2}{L}}\, \sin\frac{n\pi x}{L}\\ n&=\left\{1, 2, 3, \dots\right\} \end{align}
Eigenvalue Equations: \begin{align} \hat{H}\left|{n}\right\rangle &=\frac{\pi^2\hbar^2}{2\mu L^2}\, n^2 \left|{n}\right\rangle \\ \end{align}
Particle-on-a-Ring
Hamiltonian: \begin{align} \hat{H} &\doteq -\frac{\hbar^2}{2I}\frac{\partial^2}{\partial \phi^2} \end{align} Eigenstates: \begin{align} \left|{m}\right\rangle &\doteq\frac{1}{\sqrt{2\pi r_0}}\, e^{im\phi}\\ m&=\left\{\dots -2, -1, 0, 1, 2, \dots\right\} \end{align} Eigenvalue Equations: \begin{align} \hat{H}\left|{m}\right\rangle &=\frac{\hbar^2}{2I}\, m^2 \left|{m}\right\rangle \\ \hat{L}^2\left|{m}\right\rangle &=\hbar^2\, m^2 \left|{m}\right\rangle \\ \hat{L}_z\left|{m}\right\rangle &=\hbar\, m \left|{m}\right\rangle \end{align}
2-D Particle-in-a-Box
Hamiltonian: \begin{align} \hat{H} &\doteq -\frac{\hbar^2}{2m}\Big(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}) \end{align} Eigenstates: \begin{align} \left|{mn}\right\rangle &\doteq\sqrt{\frac{2}{L_x}}\sqrt{\frac{2}{L_y}}\, \sin\frac{m\pi x}{L_x}\sin\frac{n\pi y}{L_y}\\ m&=\left\{1, 2, 3, \dots\right\}\\ n&=\left\{1, 2, 3, \dots\right\} \end{align} Eigenvalue Equations: \begin{align} \hat{H}\left|{mn}\right\rangle &=\frac{\pi^2\hbar^2}{2\mu}\, \left(\frac{m^2}{L_x^2}+\frac{n^2}{L_y^2}\right) \left|{mn}\right\rangle \\ \end{align}
Particle-on-a-Sphere
Hamiltonian: \begin{align} \hat{H} &\doteq -\frac{\hbar^2}{2I} \Big[\frac{1}{\sin\theta}\frac{\partial}{\partial \theta} \Big(\sin\theta \frac{\partial}{\partial \theta} \big) + \frac{1}{\sin^2\theta}\frac{\partial^2}{\partial \phi^2} \Big] \end{align} Eigenstates: \begin{align} \left|{\ell m}\right\rangle &\doteq Y_{\ell}^m(\theta, \phi)\\ &=(-1)^{\frac{m+|m|}{2}}\sqrt{\frac{2\ell+1}{4\pi}\frac{(\ell-m)!}{(\ell+m)!}} \,P_{\ell}^m(\cos\theta)\, e^{im\phi}\\ \ell&=\left\{0, 1, 2, \dots\right\}\\ m&=\left\{-\ell, \dots , 0, \dots,\ell\right\} \end{align} Eigenvalue Equations: \begin{align} \hat{H}\left|{\ell m}\right\rangle &=\frac{\hbar^2}{2I}\, \ell(\ell+1) \left|{\ell m}\right\rangle \\ \hat{L}^2\left|{\ell m}\right\rangle &=\hbar^2\, \ell(\ell+1) \left|{\ell m}\right\rangle \\ \hat{L}_z\left|{\ell m}\right\rangle &=\hbar\, m \left|{\ell m}\right\rangle \end{align}
Hydrogen Atom
Hamiltonian: \begin{align} \hat{H} &\doteq -\frac{\hbar^2}{2\mu} \nabla^2 - \frac{ke^2}{r} \\ &\doteq -\frac{\hbar^2}{2\mu r^2} \Big[\frac{\partial}{\partial r} \Big( r^2 \frac{\partial}{\partial r} \Big) + \frac{1}{\sin\theta}\frac{\partial}{\partial \theta} \Big(\sin\theta \frac{\partial}{\partial \theta} \big) + \frac{1}{\sin^2\theta}\frac{\partial^2}{\partial \phi^2} \Big] - \frac{ke^2}{r} \end{align} Eigenstates: \begin{align} \left|{n\ell m}\right\rangle &\doteq R_{n\ell}(r)\, Y_{\ell}^m(\theta, \phi)\\ &=-\sqrt{\left(\frac{2Z}{na_0}\right)^3 \frac{(n-\ell-1)!}{2n[(n+\ell)!]^3}} \left(\frac{2\rho}{n}\right)^{\ell}\, e^{-\frac{\rho}{n}}\, L_{n+\ell}^{2\ell+1}{\scriptstyle{\left(\frac{2\rho}{n}\right)}} (-1)^{\frac{m+|m|}{2}} \sqrt{\frac{2\ell+1}{4\pi}\frac{(\ell-m)!}{(\ell+m)!}} \,P_{\ell}^m(\cos\theta)\, e^{im\phi}\\ \rho&=\frac{Zr}{a_0}\\ n&=\left\{1, 2, 3,\dots\right\}\\ \ell&=\left\{0, 1, 2, \dots, n-1\right\}\\ m&=\left\{-\ell, \dots , 0, \dots,\ell\right\} \end{align} Eigenvalue Equations: \begin{align} \hat{H}\left|{n\ell m}\right\rangle &=-\frac{1}{2}\left(\frac{Ze^2}{4\pi\epsilon_0}\right)^2 \frac{\mu}{\hbar^2}\,\frac{1}{n^2}\, \left|{n \ell m}\right\rangle \\ &=-13.6 \text{eV}\,\frac{1}{n^2}\, \left|{n \ell m}\right\rangle \\ \hat{L}^2\left|{n \ell m}\right\rangle &=\hbar^2\, \ell(\ell+1) \left|{n \ell m}\right\rangle \\ \hat{L}_z\left|{n \ell m}\right\rangle &=\hbar\, m \left|{n \ell m}\right\rangle \end{align}
- How to translate a complicated wavefunction into eigenstates.
- Refresher on how to find expectation values and probabilities in a region.
- How to use the symmetry of the wavefunction to tell you something about measurements.
In this unit, you will explore the quantum mechanics of a simple system: a particle confined to a one-dimensional ring.
Motivating Questions
- What are the energy eigenstates, i.e. eigenstates of the Hamiltonian?
- What physical properties of the energy eigenstates can be measured?
- What other states are possible and what are their physical properties?
- How do the states change if this system and their physical properties depend on time?
Key Activities/Problems
- Activity: Working with Representations on the Ring
- Problem: Ring Table
- Activity: Visualization of Quantum Probabilities for a Particle Confined to a Ring
- Activity: Time Dependence for a Quantum Particle on a Ring
Unit Learning Outcomes
At the end of this unit, you should be able to:
- Describe the energy eigenstates for the ring system algebraically and graphically.
- List the physical measurables for the system and give expressions for the corresponding operators in bra/ket, matrix, and position representations.
- Give the possible quantum numbers for the quantum ring system and describe any degeneracies.
- For a given state, use the inner product in bra/ket, matrix, and position representations, to find the probability of making any physically relevant measurement, including states with degeneracy.
- Use an expansion in energy eigenstates to find the time dependence of a given state.
Equation Sheet for This Unit
Problem
- Let \[|\alpha\rangle \doteq \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\ 1 \end{pmatrix} \qquad \rm{and} \qquad |\beta\rangle \doteq \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\ -1 \end{pmatrix}\] Show that \(\left|{\alpha}\right\rangle \) and \(\left|{\beta}\right\rangle \) are orthonormal. (If a pair of vectors is orthonormal, that suggests that they might make a good basis.)
- Consider the matrix \[C\doteq \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix} \] Show that the vectors \(|\alpha\rangle\) and \(|\beta\rangle\) are eigenvectors of C and find the eigenvalues. (Note that showing something is an eigenvector of an operator is far easier than finding the eigenvectors if you don't know them!)
- A operator is always represented by a diagonal matrix if it is written in terms of the basis of its own eigenvectors. What does this mean? Find the matrix elements for a new matrix \(E\) that corresponds to \(C\) expanded in the basis of its eigenvectors, i.e. calculate \(\langle\alpha|C|\alpha\rangle\), \(\langle\alpha|C|\beta\rangle\), \(\langle\beta|C|\alpha\rangle\) and \(\langle\beta|C|\beta\rangle\) and arrange them into a sensible matrix \(E\). Explain why you arranged the matrix elements in the order that you did.
- Find the determinants of \(C\) and \(E\). How do these determinants compare to the eigenvalues of these matrices?
Consider a two-state quantum system with a Hamiltonian \begin{equation} \hat{H}\doteq \begin{pmatrix} E_1&0\\ 0&E_2 \end{pmatrix} \end{equation} Another physical observable \(M\) is described by the operator \begin{equation} \hat{M}\doteq \begin{pmatrix} 0&c\\ c&0 \end{pmatrix} \end{equation} where \(c\) is real and positive. Let the initial state of the system be \(\left|{\psi(0)}\right\rangle =\left|{m_1}\right\rangle \), where \(\left|{m_1}\right\rangle \) is the eigenstate corresponding to the larger of the two possible eigenvalues of \(\hat{M}\). What is the expectation value of \(M\) as a function of time? What is the frequency of oscillation of the expectation value of \(M\)?
For this problem, use the vectors \(|a\rangle = 4 |1\rangle - 3 |2\rangle\) and \(|b\rangle = -i |1\rangle + |2\rangle\).
- Find \(\langle a | b \rangle\) and \(\langle b | a \rangle\). Discuss how these two inner products are related to each other.
- For \(\hat{Q}\doteq \begin{pmatrix} 2 & i \\ -i & -2 \end{pmatrix} \), calculate \(\langle1|\hat{Q}|2\rangle\), \(\langle2|\hat{Q}|1\rangle\), \(\langle a|\hat{Q}| b \rangle\) and \(\langle b|\hat{Q}|a \rangle\).
- What kind of mathematical object is \(|a\rangle\langle b|\)? What is the result if you multiply a ket (for example, \(| a\rangle\) or \(|1\rangle\)) by this expression? What if you multiply this expression by a bra?
Problem
- Find the eigenvalues and normalized eigenvectors of the Pauli matrices \(\sigma_x\), \(\sigma_y\), and \(\sigma_z\) (see the Spins Reference Sheet posted on the course website).
In quantum mechanics, it turns out that the overall phase for a state does not have any physical significance. Therefore, you will need to become quick at rearranging the phase of various states. For each of the vectors listed below, rewrite the vector as an overall complex phase times a new vector whose first component is real and positive. \[\left|D\right\rangle\doteq \begin{pmatrix} 7e^{i\frac{\pi}{6}}\\ 3e^{i\frac{\pi}{2}}\\ -1\\ \end{pmatrix}\\ \left|E\right\rangle\doteq \begin{pmatrix} i\\ 4\\ \end{pmatrix}\\ \left|F\right\rangle\doteq \begin{pmatrix} 2+2i\\ 3-4i\\ \end{pmatrix} \]
The Pauli spin matrices \(\sigma_x\), \(\sigma_y\), and \(\sigma_z\) are defined by: \[\sigma_x= \begin{pmatrix} 0&1\\ 1&0\\ \end{pmatrix} \hspace{2em} \sigma_y= \begin{pmatrix} 0&-i\\ i&0\\ \end{pmatrix} \hspace{2em} \sigma_z= \begin{pmatrix} 1&0\\ 0&-1\\ \end{pmatrix} \] These matrices are related to angular momentum in quantum mechanics.
- By drawing pictures, convince yourself that the arbitrary unit vector \(\hat n\) can be written as: \[\hat n=\sin\theta\cos\phi\, \hat x +\sin\theta\sin\phi\,\hat y+\cos\theta\,\hat z\] where \(\theta\) and \(\phi\) are the parameters used to describe spherical coordinates.
- Find the entries of the matrix \(\hat n\cdot\vec \sigma\) where the “matrix-valued-vector” \(\vec \sigma\) is given in terms of the Pauli spin matrices by \[\vec\sigma=\sigma_x\, \hat x + \sigma_y\, \hat y+\sigma_z\, \hat z\] and \(\hat n\) is given in part (a) above.
Problem
Consider the three quantum states: \[\left\vert \psi_1\right\rangle = \frac{1}{\sqrt{3}}\left\vert +\right\rangle+ i\frac{\sqrt{2}}{\sqrt{3}} \left\vert -\right\rangle\] \[\left\vert \psi_2\right\rangle = \frac{1}{\sqrt{5}}\left\vert +\right\rangle- \frac{2}{\sqrt{5}} \left\vert -\right\rangle\] \[\left\vert \psi_3\right\rangle = \frac{1}{\sqrt{2}}\left\vert +\right\rangle+ i\frac{e^{\frac{i\pi}{4}}}{\sqrt{2}} \left\vert -\right\rangle\]
- For each of the \(\vert \psi_i\rangle\) above, find the normalized vector \(\vert \phi_i\rangle\) that is orthogonal to it.
- Calculate the inner products \(\langle \psi_i\vert \psi_j\rangle\) for \(i\) and \(j=1\), \(2\), \(3\).
Consider the quantum state: \[\left\vert \psi\right\rangle = \frac{1}{\sqrt{3}}\left\vert +\right\rangle+ i\frac{\sqrt{2}}{\sqrt{3}} \left\vert -\right\rangle\]
Find the normalized vector \(\vert \phi\rangle\) that is orthogonal to it.
None
You know that the normalized spatial eigenfunctions for a particle in a 1-D box of length \(L\) are \(\sqrt{\frac{2}{L}}\sin{\frac{n\pi x}{L}}\). If you want the eigenfunctions for a particle in a 2-D box, then you just multiply together the eigenfunctions for a 1-D box in each direction. (This is what the separation of variables procedure tells you to do.)
- Find the normalized eigenfunctions for a particle in a 2-D box with sides of length \(L\) in the \(x\)-direction and length \(W\) in the \(y\)-direction.
- Find the Hamiltonian for a 2-D box and show that your eigenstates are indeed eigenstates and find a formula for the possible energies
Any sufficiently smooth spatial wave function inside a 2-D box can be expanded in a double sum of the product wave functions, i.e. \begin{equation} \psi(x,y)=\sum_{n=1}^{\infty}\sum_{m=1}^{\infty}\, c_{nm}\; \hbox{eigenfunction}_n(x)\;\hbox{eigenfunction}_m(y) \end{equation} Using your expressions from part (a) above, write out all the terms in this sum out to \(n=3\), \(m=3\). Arrange the terms, conventionally, in terms of increasing energy.
You may find it easier to work in bra/ket notation: \begin{align*} \left|{\psi}\right\rangle &=\sum_{n=1}^{\infty}\sum_{m=1}^{\infty}\, c_{nm}\left|{n}\right\rangle \left|{m}\right\rangle \\ &=\sum_{n=1}^{\infty}\sum_{m=1}^{\infty}\, c_{nm}\left|{nm}\right\rangle \end{align*}
- Find a formula for the \(c_{nm}\)s in part (c). Find the formula first in bra ket notation and then rewrite it in wave function notation.
Problem
Show that if a linear combination of ring energy eigenstates is normalized, then the coefficients must satisfy \begin{equation} \sum_{m=-\infty}^{\infty} \vert c_m\vert^2=1 \end{equation}
Problem
First complete the problem Diagonalization. In that notation:
- Find the matrix \(S\) whose columns are \(|\alpha\rangle\) and \(|\beta\rangle\). Show that \(S^{\dagger}=S^{-1}\) by calculating \(S^{\dagger}\) and multiplying it by \(S\). (Does the order of multiplication matter?)
- Calculate \(B=S^{-1} C S\). How is the matrix \(E\) related to \(B\) and \(C\)? The transformation that you have just done is an example of a “change of basis”, sometimes called a “similarity transformation.” When the result of a change of basis is a diagonal matrix, the process is called diagonalization.
Students use completeness relations to write a matrix element of a spin component in a different basis.
Problem
Consider one particle confined to a cube of side \(L\); the concentration in effect is \(n=L^{-3}\). Find the kinetic energy of the particle when in the ground state. There will be a value of the concentration for which this zero-point quantum kinetic energy is equal to the temperature \(kT\). (At this concentration the occupancy of the lowest orbital is of the order of unity; the lowest orbital always has a higher occupancy than any other orbital.) Show that the concentration \(n_0\) thus defined is equal to the quantum concentration \(n_Q\) defined by (63): \begin{equation} n_Q \equiv \left(\frac{MkT}{2\pi\hbar^2}\right)^{\frac32} \end{equation} within a factor of the order of unity.
Problem
The following two problems ask you to make Fermi estimates. In a good Fermi estimate, you start from basic scientific facts you already know or quantities that you can reasonably estimate based on your life experiences and then reason your way to estimate a quantity that you would not be able guess. You may look up useful conversion factors or constants. Use words, pictures, and equations to explain your reasoning:
- Imagine that you send a pea-sized bead of silver through a Stern-Gerlach device oriented to measure the z-component of intrinsic spin. Estimate the total z-component of the intrinsic spin of the ball you would measure in the HIGHLY improbable case that every atom is spin up.
- Protons, neutrons, and electrons are all spin-1/2 particles. Give a (very crude) order of magnitude estimate of the number of these particles in your body.
Lecture about finding \(\left|{\pm}\right\rangle _x\) and then \(\left|{\pm}\right\rangle _y\). There are two conventional choices to make: relative phase for \(_x\left\langle {+}\middle|{-}\right\rangle _x\) and \(_y\left\langle {+}\middle|{+}\right\rangle _x\).
So far, we've talked about how to calculate measurement probabilities if you know the input and output quantum states using the probability postulate:
\[\mathcal{P} = | \left\langle {\psi_{out}}\middle|{\psi_{in}}\right\rangle |^2 \]
Now we're going to do this process in reverse.
I want to be able to relate the output states of Stern-Gerlach analyzers oriented in different directions to each other (like \(\left|{\pm}\right\rangle _x\) and \(\left|{\pm}\right\rangle _x\) to \(\left|{\pm}\right\rangle \)). Since \(\left|{\pm}\right\rangle \) forms a basis, I can write any state for a spin-1/2 system as a linear combination of those states, including these special states.
I'll start with \(\left|{+}\right\rangle _x\) written in the \(S_z\) basis with general coefficients:
\[\left|{+}\right\rangle _x = a \left|{+}\right\rangle + be^{i\phi} \left|{-}\right\rangle \]
Notice that:
(1) \(a\), \(b\), and \(\phi\) are all real numbers; (2) the relative phase is loaded onto the second coefficient only.
My job is to use measurement probabilities to determine \(a\), \(b\), and \(\phi\).
I'll prepare a state \(\left|{+}\right\rangle _x\) and then send it through \(x\), \(y\), and \(z\) analyzers. When I do that, I see the following probabilities:
Input = \(\left|{+}\right\rangle _x\) \(S_x\) \(S_y\) \(S_z\) \(P(\hbar/2)\) 1 1/2 1/2 \(P(-\hbar/2)\) 0 1/2 1/2 First, looking at the probability for the \(S_z\) components:
\[\mathcal(S_z = +\hbar/2) = | \left\langle {+}\middle|{+}\right\rangle _x |^2 = 1/2\]
Plugging in the \(\left|{+}\right\rangle _x\) written in the \(S_z\) basis:
\[1/2 = \Big| \left\langle {+}\right|\Big( a\left|{+}\right\rangle + be^{i\phi} \left|{-}\right\rangle \Big) \Big|^2\]
Distributing the \(\left\langle {+}\right|\) through the parentheses and use orthonormality: \begin{align*} 1/2 &= \Big| a\cancelto{1}{\left\langle {+}\middle|{+}\right\rangle } + be^{i\phi} \cancelto{0}{\left\langle {+}\middle|{-}\right\rangle } \Big|^2 \\ &= |a|^2\\[12pt] \rightarrow a &= \frac{1}{\sqrt{2}} \end{align*}
Similarly, looking at \(S_z = -\hbar/2\): \begin{align*} \mathcal(S_z = +\hbar/2) &= | \left\langle {-}\middle|{+}\right\rangle _x |^2 = 1/2 \\ 1/2 = \Big| \left\langle {-}\right|\Big( a\left|{+}\right\rangle + be^{i\phi} \left|{-}\right\rangle \Big) \Big|^2\\ 1/2 &= \Big| a\cancelto{0}{\left\langle {-}\middle|{+}\right\rangle } + be^{i\phi} \cancelto{1}{\left\langle {-}\middle|{-}\right\rangle } \Big|^2 \\ &= |be^{i\phi}|^2\\ &= |b|^2 \cancelto{1}{(e^{i\phi})(e^{-i\phi})}\\[12pt] \rightarrow b &= \frac{1}{\sqrt{2}} \end{align*}
I can't yet solve for \(\phi\) but I can do similar calculations for \(\left|{-}\right\rangle _x\):
\begin{align*} \left|{-}\right\rangle _x &= c \left|{+}\right\rangle + de^{i\gamma} \left|{-}\right\rangle \\ \mathcal(S_z = +\hbar/2) &= | \left\langle {+}\middle|{-}\right\rangle _x |^2 = 1/2\\ \rightarrow c = \frac{1}{\sqrt{2}}\\ \mathcal(S_z = +\hbar/2) &= | \left\langle {-}\middle|{-}\right\rangle _x |^2 = 1/2\\ \rightarrow d = \frac{1}{\sqrt{2}}\\ \end{align*}
Input = \(\left|{-}\right\rangle _x\) \(S_x\) \(S_y\) \(S_z\) \(P(\hbar/2)\) 0 1/2 1/2 \(P(-\hbar/2)\) 1 1/2 1/2 So now I have: \begin{align*} \left|{+}\right\rangle _x &= \frac{1}{\sqrt{2}} \left|{+}\right\rangle + \frac{1}{\sqrt{2}}e^{i\beta} \left|{-}\right\rangle \\ \left|{-}\right\rangle _x &= \frac{1}{\sqrt{2}} \left|{+}\right\rangle + \frac{1}{\sqrt{2}}e^{i\gamma} \left|{-}\right\rangle \\ \end{align*}
I know \(\beta \neq \gamma\) because these are not the same state - they are orthogonal to each other: \begin{align*} 0 &= \,_x\left\langle {+}\middle|{-}\right\rangle _x \\ &= \Big(\frac{1}{\sqrt{2}} \left\langle {+}\right| + \frac{1}{\sqrt{2}}e^{i\beta} \left\langle {-}\right| \Big)\Big( \frac{1}{\sqrt{2}} \left|{+}\right\rangle + \frac{1}{\sqrt{2}}e^{i\gamma} \left|{-}\right\rangle \Big)\\ \end{align*}
Now FOIL like mad and use orthonormality: \begin{align*} 0 &= \frac{1}{2}\Big(\cancelto{1}{\left\langle {+}\middle|{+}\right\rangle } + e^{i\gamma} \cancelto{0}{\left\langle {+}\middle|{-}\right\rangle } + e^{i\beta} \cancelto{0}{\left\langle {-}\middle|{+}\right\rangle } + e^{i(\gamma - \beta)}\cancelto{1}{\left\langle {-}\middle|{-}\right\rangle } \Big)\\ &= \frac{1}{2}\Big(1 + e^{i(\gamma - \beta} \Big) \\ \rightarrow & \quad e^{i(\gamma-\beta)} = -1 \end{align*}
This means that \(\gamma-\beta = \pi\). I don't have enough information to solve for \(\beta\) and \(\gamma\), but there is a one-time conventional choice made that \(\beta = 0\) and \(\gamma = 1\), so that: \begin{align*} \left|{+}\right\rangle _x &= \frac{1}{\sqrt{2}} \left|{+}\right\rangle + \frac{1}{\sqrt{2}}\cancelto{1}{e^{i0}} \left|{-}\right\rangle \\ \left|{-}\right\rangle _x &= \frac{1}{\sqrt{2}} \left|{+}\right\rangle + \frac{1}{\sqrt{2}}\cancelto{-1}{e^{i\pi}} \left|{-}\right\rangle \\[12pt] \rightarrow \left|{+}\right\rangle _x &= \frac{1}{\sqrt{2}} \left|{+}\right\rangle \color{red}{+} \frac{1}{\sqrt{2}}\left|{-}\right\rangle \\ \left|{-}\right\rangle _x &= \frac{1}{\sqrt{2}} \left|{+}\right\rangle \color{red}{-} \frac{1}{\sqrt{2}}\left|{-}\right\rangle \\[12pt] \end{align*}
When \(\left|{\pm}\right\rangle _y\) is the input state:
Input = \(\left|{+}\right\rangle _y\) \(S_x\) \(S_y\) \(S_z\) \(P(\hbar/2)\) 1/2 1 1/2 \(P(-\hbar/2)\) 1/2 0 1/2
Input = \(\left|{-}\right\rangle _y\) \(S_x\) \(S_y\) \(S_z\) \(P(\hbar/2)\) 1/2 0 1/2 \(P(-\hbar/2)\) 1/2 1 1/2 The calculations proceed in the same way. The \(S_z\) probabilities give me: \begin{align*} \left|{+}\right\rangle _y &= \frac{1}{\sqrt{2}} \left|{+}\right\rangle + \frac{1}{\sqrt{2}}\cancelto{1}{e^{i\alpha}} \left|{-}\right\rangle \\ \left|{-}\right\rangle _y &= \frac{1}{\sqrt{2}} \left|{+}\right\rangle + \frac{1}{\sqrt{2}}\cancelto{-1}{e^{i\theta}} \left|{-}\right\rangle \\ \end{align*}
The orthongality between \(\left|{+}\right\rangle _y\) and \(\left|{-}\right\rangle _y\) mean that \(\theta - \alpha = \pi\).
But I also know the \(S_x\) probabilities and how to write \(|ket{\pm}_x\) in the \(S_z\) basis. For an input of \(\left|{+}\right\rangle _y\): \begin{align*} \mathcal(S_x = +\hbar/2) &= | \,_x\left\langle {+}\middle|{+}\right\rangle _y |^2 = 1/2 \\ 1/2 &= \Big| \Big(\frac{1}{\sqrt{2}} \left\langle {+}\right| + \frac{1}{\sqrt{2}}\left\langle {-}\right|\Big) \Big( \frac{1}{\sqrt{2}}\left|{+}\right\rangle + \frac{1}{\sqrt{2}}e^{i\alpha} \left|{-}\right\rangle \Big) \Big|^2\\ 1/2 &= \Big| \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \cancelto{1}{\left\langle {+}\middle|{+}\right\rangle } + \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}e^{i\alpha} \cancelto{1}{\left\langle {-}\middle|{-}\right\rangle } \Big|^2 \\ &= \frac{1}{4}|1+e^{i\alpha}|^2\\ &= \frac{1}{4} \Big( 1+e^{i\alpha}\Big) \Big( 1+e^{-i\alpha}\Big)\\ &= \frac{1}{4} \Big( 2+e^{i\alpha} + e^{-i\alpha}\Big)\\ &= \frac{1}{4} \Big( 2+2\cos\alpha\Big)\\ \frac{1}{2} &= \frac{1}{2} + \frac{1}{2}\cos\alpha \\ 0 &= \cos\alpha\\ \rightarrow \alpha = \pm \frac{\pi}{2} \end{align*}
Here, again, I can't solve exactly for alpha (or \(\theta\)), but the convention is to choose \(alpha = \frac{\pi}{2}\) and \(\theta = \frac{3\pi}{2}\), making \begin{align*} \left|{+}\right\rangle _y &= \frac{1}{\sqrt{2}} \left|{+}\right\rangle + \frac{1}{\sqrt{2}}\cancelto{i}{e^{i\pi/2}} \left|{-}\right\rangle \\ \left|{-}\right\rangle _y &= \frac{1}{\sqrt{2}} \left|{+}\right\rangle + \frac{1}{\sqrt{2}}\cancelto{-i}{e^{i3\pi/2}} \left|{-}\right\rangle \\ \rightarrow \left|{+}\right\rangle _y &= \frac{1}{\sqrt{2}} \left|{+}\right\rangle \color{red}{+} \frac{\color{red}{i}}{\sqrt{2}} \left|{-}\right\rangle \\ \left|{-}\right\rangle _y &= \frac{1}{\sqrt{2}} \left|{+}\right\rangle \color{red}{-} \frac{\color{red}{i}}{\sqrt{2}} \left|{-}\right\rangle \\ \end{align*}
If I use these two convenctions for the relative phases, then I can write down \(\left|{\pm}\right\rangle _n\) in an arbitrary direction described by the spherical coordinates \(\theta\) and \(\phi\) as:
Discuss the generalize eigenstates: \begin{align*}\ \left|{+}\right\rangle _n &= \cos \frac{\theta}{2} \left|{+}\right\rangle + \sin \frac{\theta}{2} e^{i\phi} \left|{-}\right\rangle \\ \left|{-}\right\rangle _n &= \sin \frac{\theta}{2} \left|{+}\right\rangle - \cos \frac{\theta}{2} e^{i\phi} \left|{-}\right\rangle \end{align*}
And how the \(\left|{\pm}\right\rangle _x\) and \(\left|{\pm}\right\rangle _y\) are consistent.
Student explore the properties of an orthonormal basis using the Cartesian and \(S_z\) bases as examples.
Students consider the relation (1) between the angular momentum and magnetic moment for a current loop and (2) the force on a magnetic moment in an inhomogeneous magnetic field. Students make a (classical) prediction of the outcome of a Stern-Gerlach experiment.
Students find matrix elements of the position operator \(\hat x\) in a sinusoidal basis. This allows them to express this operator as a matrix, which they can then numerically diagonalize and visualize the eigenfunctions.
Students compute inner products to expand a wave function in a sinusoidal basis set. This activity introduces the inner product for wave functions, and the idea of approximating a wave function using a finite set of basis functions.
Students compute probabilities and averages given a probability density in one dimension. This activity serves as a soft introduction to the particle in a box, introducing all the concepts that are needed.
Eigenvalues and EigenvectorsEach group will be assigned one of the following matrices.
\[ A_1\doteq \begin{pmatrix} 0&-1\\ 1&0\\ \end{pmatrix} \hspace{2em} A_2\doteq \begin{pmatrix} 0&1\\ 1&0\\ \end{pmatrix} \hspace{2em} A_3\doteq \begin{pmatrix} -1&0\\ 0&-1\\ \end{pmatrix} \]
\[ A_4\doteq \begin{pmatrix} a&0\\ 0&d\\ \end{pmatrix} \hspace{2em} A_5\doteq \begin{pmatrix} 3&-i\\ i&3\\ \end{pmatrix} \hspace{2em} A_6\doteq \begin{pmatrix} 0&0\\ 0&1\\ \end{pmatrix} \hspace{2em} A_7\doteq \begin{pmatrix} 1&2\\ 1&2\\ \end{pmatrix} \]
\[ A_8\doteq \begin{pmatrix} -1&0&0\\ 0&-1&0\\ 0&0&-1\\ \end{pmatrix} \hspace{2em} A_9\doteq \begin{pmatrix} -1&0&0\\ 0&-1&0\\ 0&0&1\\ \end{pmatrix} \]
\[ S_x\doteq \frac{\hbar}{2}\begin{pmatrix} 0&1\\ 1&0\\ \end{pmatrix} \hspace{2em} S_y\doteq \frac{\hbar}{2}\begin{pmatrix} 0&-i\\ i&0\\ \end{pmatrix} \hspace{2em} S_z\doteq \frac{\hbar}{2}\begin{pmatrix} 1&0\\ 0&-1\\ \end{pmatrix} \]For your matrix:
- Find the eigenvalues.
- Find the (unnormalized) eigenvectors.
- Describe what this transformation does.
- Normalize your eigenstates.
If you finish early, try another matrix with a different structure, i.e. real vs. complex entries, diagonal vs. non-diagonal, \(2\times 2\) vs. \(3\times 3\), with vs. without explicit dimensions.
Instructor's Guide
Main Ideas
This is a small group activity for groups of 3-4. The students will be given one of 10 matrices. The students are then instructed to find the eigenvectors and eigenvalues for this matrix and record their calculations on their medium-sized whiteboards. In the class discussion that follows students report their finding and compare and contrast the properties of the eigenvalues and eigenvectors they find. Two topics that should specifically discussed are the case of repeated eigenvalues (degeneracy) and complex eigenvectors, e.g., in the case of some pure rotations, special properties of the eigenvectors and eigenvalues of hermitian matrices, common eigenvectors of commuting operators.
Students' Task
Introduction
Give a mini-lecture on how to calculate eigenvalues and eigenvectors. It is often easiest to do this with an example. We like to use the matrix \[A_7\doteq\begin{pmatrix}1&2\cr 9&4\cr\end{pmatrix}\] from the https://paradigms.oregonstate.edu/activities/2179 https://paradigms.oregonstate.edu/activities/2179 Finding Eigenvectors and Eigenvalues since the students have already seen this matrix and know what it's eigenvectors are. Then every group is given a handout, assigned a matrix, and then asked to: - Find the eigenvalues - Find the (unnormalized) eigenvectors - Normalize the eigenvectors - Describe what this transformation doesStudent Conversations
- Typically, students can find the eigenvalues without too much problem. Eigenvectors are a different story. To find the eigenvectors, they will have two equations with two unknowns. They expect to be able to find a unique solution. But, since any scalar multiple of an eigenvector is also an eigenvector, their two equations will be redundant. Typically, they must choose any convenient value for one of the components (e.g. \(x=1\)) and solve for the other one. Later, they can use this scale freedom to normalize their vector.
- The examples in this activity were chosen to include many of the special cases that can trip students up. A common example is when the two equations for the eigenvector amount to something like \(x=x\) and \(y=-y\). For the first equation, they may need help to realize that \(x=\) “anything” is the solution. And for the second equation, sadly, many students need to be helped to the realization that the only solution is \(y=0\).
Wrap-up
The majority of the this activity is in the wrap-up conversation.
The [[whitepapers:narratives:eigenvectorslong|Eigenvalues and Eigenvectors Narrative]] provides a detailed narrative interpretation of this activity, focusing on the wrap-up conversation.
- Complex eigenvectors: connect to discussion of rotations in the Linear Transformations activity where there did not appear to be any vectors that stayed the same.
- Degeneracy: Define degeneracy as the case when there are repeated eigenvalues. Make sure the students see that, in the case of degeneracy, an entire subspace of vectors are all eigenvectors.
- Diagonal Matrices: Discuss that diagonal matrices are trivial. Their eigenvalues are just their diagonal elements and their eigenvectors are just the standard basis.
- Matrices with dimensions: Students should see from these examples that when you multiply a transformation by a real scalar, its eigenvalues are multiplied by that scalar and its eigenvectors are unchanges. If the scalar has dimensions (e.g. \(\hbar/2\)), then the eigenvalues have the same dimensions.
Students are asked to find eigenvalues, probabilities, and expectation values for \(H\), \(L^2\), and \(L_z\) for a superposition of \(\vert n \ell m \rangle\) states. This can be done on small whiteboards or with the students working in groups on large whiteboards.
Students then work together in small groups to find the matrices that correspond to \(H\), \(L^2\), and \(L_z\) and to redo \(\langle E\rangle\) in matrix notation.
Students use Mathematica to visualize the probability density distribution for the hydrogen atom orbitals with the option to vary the values of \(n\), \(\ell\), and \(m\).
In this small group activity, students solve for the time dependence of two quantum spin 1/2 particles under the influence of a Hamiltonian. Students determine, given a Hamiltonian, which states are stationary and under what circumstances measurement probabilities do change with time.
Students, working in pairs, use their left arms to demonstrate time evolution in spin 1/2 quantum systems.
Students work in small groups to use completeness relations to change the basis of quantum states.
- How to form a state as a column vector in matrix representation.
- How to do probability calculations on all three representations used for quantum systems in PH426.
- How to find probabilities for and the resultant state after measuring degenerate eigenvalues.
Students use their arms to act out two spin-1/2 quantum states and their inner product.
- Students need to understand that the surface represents the electric potential in the center of a parallel plate capacitor. Try doing the activity Electric Potential of Two Charged Plates before this activity.
- Students should know that
- objects with like charge repel and opposite charge attract,
- object tend to move toward lower energy configurations
- The potential energy of a charged particle is related to its charge: \(U=qV\)
- The force on a charged particle is related to its charge: \(\vec{F}=q\vec{E}\)
The instructor gives a brief lecture about time dependence of energy eigenstates (e.g. McIntyre, 3.1). Notes for the students are attached.
This lab gives students a chance to take data on the first day of class (or later, but I prefer to do it the first day of class). It provides an immediate context for thermodynamics, and also gives them a chance to experimentally measure a change in entropy. Students are required to measure the energy required to melt ice and raise the temperature of water, and measure the change in entropy by integrating the heat capacity.
Students consider how changing the volume of a system changes the internal energy of the system. Students use plastic graph models to explore these functions.
In this introduction to heat capacity, students determine a derivative that indicates how much the internal energy changes as the temperature changes when volume is held constant.
In this activity, students apply the Stefan-Boltzmann equation and the principle of energy balance in steady state to find the steady state temperature of a black object in near-Earth orbit.
In this lecture, the instructor guides a discussion about translating between bra-ket notation and wavefunction notation for quantum systems.