	Ket Representation	Wave Function Representation	Matrix Representation
Operator for z- component of angular momentum	L_z		
Eigenvalues of L_z			
Normalized Eigenstates of L_z	$ m\rangle$		
Coefficient of m^{th} eigenstates of L_z			
Probability of measuring <i>mħ</i> for z-component of angular momentum	$P(\hbar m) = c_m ^2 = \langle m \Phi\rangle ^2$		$P(m\hbar) = c_m ^2 = \begin{pmatrix} \cdots & 1 & \cdots & 0 & \cdots \end{pmatrix} \begin{pmatrix} \vdots \\ c_m \\ \vdots \\ c_0 \\ \vdots \end{pmatrix}^2$
Expectation value of z-component of angular momentum			$\langle \Phi L_{z} \Phi \rangle = \begin{pmatrix} \cdots & c_{1}^{*} & c_{0}^{*} & c_{-1}^{*} & \cdots \end{pmatrix} \begin{pmatrix} \ddots & \vdots & \vdots & \vdots & \ddots \\ \cdots & 1\hbar & 0 & 0 & \cdots \\ \cdots & 0 & 0\hbar & 0 & \cdots \\ \cdots & 0 & 0 & -1\hbar & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} \begin{pmatrix} \vdots \\ c_{1} \\ c_{0} \\ c_{-1} \\ \vdots \end{pmatrix}$

	Ket Representation	Wave Function Representation	Matrix Representation
Hamiltonian	Ĥ		$ \begin{bmatrix} \ddots & \vdots & \vdots & \vdots & \ddots \\ \cdots & E_1 & 0 & 0 & \cdots \\ \cdots & 0 & E_0 & 0 & \cdots \\ \cdots & 0 & 0 & E_{-1} & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix} = \begin{bmatrix} \ddots & \vdots & \vdots & \vdots & \ddots \\ \cdots & \hbar^2/2I & 0 & 0 & \cdots \\ \cdots & 0 & 0 & 0 & \cdots \\ \cdots & 0 & 0 & \hbar^2/2I & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix} $
Eigenvalues of Hamiltonian			
Normalized Eigenstates of Hamiltonian		$\Phi_m\left(\phi\right) = \sqrt{\frac{1}{2\pi r_0}} e^{im\phi}$	
Coefficient of m^{th} energy	$c_m = \langle m \Phi \rangle$		$\begin{pmatrix} \vdots \\ c_m \end{pmatrix}$
eigenstate			$ \left \begin{array}{cccc} (\cdots & 1 & \cdots & 0 & \cdots) \\ \vdots & & & \vdots \\ c_0 & \vdots \end{array} \right $
Probability of		$ 2\pi$ $ ^2$	
measuring E_m		$P(E_m) = \left \int_0^{\pi} \sqrt{\frac{1}{2\pi r_0}} e^{-im\phi} \Phi(\phi) r_0 d\phi \right $	
		$P(E_m) = \left \int_0^{2\pi} \sqrt{\frac{1}{2\pi r_0}} e^{-im\phi} \Phi(\phi) r_0 d\phi \right ^2$ $+ \left \int_0^{2\pi} \sqrt{\frac{1}{2\pi r_0}} e^{im\phi} \Phi(\phi) r_0 d\phi \right ^2$	
Expectation value of Hamiltonian	$\left\langle \Phi \left H \right \Phi \right\rangle = \sum_{m} \left c_{m} \right ^{2} E_{m}$		