Operators & Functions

For each of the following operators:

- Test each function to see if it is an eigenfunction of the operator.
- If it is, what is the eigenvalue?
- If it is not, can you write it as a superposition of functions that are eigenfunctions of that operator?

1.
$$\hat{p} = -i\hbar \frac{d}{dx}$$

$$\psi_1(x) = Ae^{-ikx}$$

$$\psi_2(x) = Ae^{+ikx}$$

$$\psi_3(x) = A\sin(kx)$$

2.
$$\hat{H} = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2}$$
 $\psi_1(x) = Ae^{-i\frac{p}{\hbar}x}$ $\psi_2(x) = Ae^{+i\frac{p}{\hbar}x}$ $\psi_3(x) = A\sin(\frac{p}{\hbar}x)$

3.
$$\hat{H} = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2}$$
 $\psi_1(x) = A \sin(kx)$ $\psi_2(x) = A \cos(kx)$ $\psi_3(x) = Ae^{ikx}$

4.
$$\hat{S}_z \to \begin{pmatrix} \frac{\hbar}{2} & 0 \\ 0 & -\frac{\hbar}{2} \end{pmatrix}$$
 $|\psi_1\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ $|\psi_2\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ $|\psi_3\rangle = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

Are superpositions of eigenfunctions of an operator themselves eigenfunctions of the same operator?