(Algebra involving trigonometric functions) Purpose: Practice with polar equations.
The general equation for a straight line in polar coordinates is given by: \begin{equation} r(\phi)=\frac{r_0}{\cos(\phi-\delta)} \end{equation} where \(r_0\) and \(\delta\) are constant parameters. Find the polar equation for the straight lines below. You do NOT need to evaluate any complicated trig or inverse trig functions. You may want to try plotting the general polar equation to figure out the roles of the parameters.
(Use the equation for orbit shape.) Gain experience with unusual force laws.
In science fiction movies, characters often talk about a spaceship “spiralling in” right before it hits the planet. But all orbits in a \(1/r^2\) force are conic sections, not spirals. This spiralling in happens because the spaceship hits atmosphere and the drag from the atmosphere changes the shape of the orbit. But, in an alternate universe, we might have other force laws.
In class, we discussed how to calculate the shape of the orbit for an inverse square potential. More generally, the equation for the orbit of a mass \(\mu\) under the influence of a central force \(f(r)\) is given by: \begin{align} \frac{d^2 u}{d\phi^2} + u &=-\frac{\mu}{\ell^2}\frac{1}{u^2}f\left(\frac{1}{u}\right)\\ \Rightarrow f\left(\frac{1}{u}\right)&=-\frac{\ell^2}{\mu}u^2 \left(\frac{d^2 u}{d\phi^2} + u\right) \end{align} where \(u=r^{-1}\).
Find the force law for a mass \(\mu\), under the influence of a central-force field, that moves in a logarithmic spiral orbit given by \(r = ke^{\alpha \phi}\), where \(k\) and \(\alpha\) are constants.
(Synthesis Problem: Brings together several different concepts from this unit.) Use effective potential diagrams for other than \(1/r^2\) forces.
Consider the frictionless motion of a hockey puck of mass \(m\) on a perfectly circular bowl-shaped ice rink with radius \(a\). The central region of the bowl (\(r < 0.8a\)) is perfectly flat and the sides of the ice bowl smoothly rise to a height \(h\) at \(r = a\).