

1 Gibbs entropy is extensive

Consider two *noninteracting* systems A and B . We can either treat these systems as separate, or as a single combined system AB . We can enumerate all states of the combined by enumerating all states of each separate system. The probability of the combined state (i_A, j_B) is given by $P_{ij}^{AB} = P_i^A P_j^B$. In other words, the probabilities combine in the same way as two dice rolls would, or the probabilities of any other uncorrelated events.

- (a) Show that the entropy of the combined system S_{AB} is the sum of entropies of the two separate systems considered individually, i.e. $S_{AB} = S_A + S_B$. This means that entropy is extensive. Use the Gibbs entropy for this computation. You need make no approximation in solving this problem.
- (b) Show that if you have N identical non-interacting systems, their total entropy is NS_1 where S_1 is the entropy of a single system.

Note In real materials, we treat properties as being extensive even when there are interactions in the system. In this case, extensivity is a property of large systems, in which surface effects may be neglected.